高中化学物质的量教案范文多篇(推荐6篇)
高中化学物质的量教案范文多篇 篇一
标题:物质的量——摩尔概念的引入
引言:
在化学中,我们常常需要对物质进行计量。然而,不同的物质具有不同的质量、体积和粒子数,这给计量带来了一定的困难。为了解决这一问题,化学家们引入了物质的量这一概念,从而使得计量更加便捷和精确。本节课我们将学习物质的量的基本概念和计算方法。
一、物质的量的概念
1.1 什么是物质的量?
物质的量是指物质中含有的粒子数目。根据国际单位制,物质的量的单位是摩尔(mol)。
1.2 摩尔与粒子的关系
1摩尔物质中含有6.022×10^23个粒子,这个数值被称为阿伏伽德罗常数,记作N_A。
二、物质的量的计算
2.1 计算物质的量的公式
物质的量(mol)= 质量(g)/ 相对分子质量(g/mol)
2.2 计算物质的质量的公式
质量(g)= 物质的量(mol)× 相对分子质量(g/mol)
2.3 计算物质的粒子数的公式
粒子数(个)= 物质的量(mol)× N_A
三、实际应用
3.1 例题1:计算氢氧化钠溶液中氢氧化钠的物质的量。
已知氢氧化钠的质量为20g,相对分子质量为40g/mol。
物质的量 = 20g / 40g/mol = 0.5mol
3.2 例题2:计算氯化钠溶液中氯离子的粒子数。
已知氯化钠的物质的量为0.1mol。
粒子数 = 0.1mol × 6.022×10^23个/mol = 6.022×10^22个
结语:
通过本节课的学习,我们了解了物质的量的基本概念和计算方法。物质的量的引入使化学计量更加便捷和精确,为我们在实验和生产中的应用提供了便利。下节课我们将学习如何利用物质的量来进行化学方程式的计算。
高中化学物质的量教案范文多篇 篇二
标题:物质的量——摩尔与化学方程式的应用
引言:
在上节课中,我们学习了物质的量的基本概念和计算方法。本节课我们将进一步应用物质的量与化学方程式进行计算,以解决化学反应中的实际问题。
一、摩尔与化学方程式
1.1 化学方程式的含义
化学方程式是用化学符号和化学式表示化学反应的方程式。
1.2 化学方程式的平衡
化学方程式中的反应物和生成物的摩尔比必须符合一定的比例,这种比例称为化学方程式的平衡。例如:
2H_2 + O_2 → 2H_2O
二、物质的量与化学方程式的应用
2.1 摩尔比与化学方程式的关系
化学方程式中反应物和生成物的系数表示了它们之间的摩尔比关系。例如:
2H_2 + O_2 → 2H_2O
反应物H_2和O_2的摩尔比为2:1,生成物H_2O的摩尔比为2:2。
2.2 计算反应物和生成物的物质的量
根据化学方程式的平衡,可以利用反应物或生成物的物质的量来计算其他物质的量。
三、实际应用
3.1 例题1:计算氢气和氧气反应生成水的物质的量。
已知氢气的物质的量为0.2mol,氧气的物质的量为0.1mol。
根据化学方程式2H_2 + O_2 → 2H_2O,得知氢气和氧气的摩尔比为2:1。
由此可得水的物质的量为0.1mol。
3.2 例题2:计算铜和硫反应生成铜硫化物的物质的量。
已知铜的物质的量为0.05mol,硫的物质的量为0.03mol。
根据化学方程式Cu + S → CuS,得知铜和硫的摩尔比为1:1。
由此可得铜硫化物的物质的量为0.03mol。
结语:
通过本节课的学习,我们进一步应用了物质的量与化学方程式进行计算,解决了化学反应中的实际问题。物质的量的概念和计算方法在化学研究和实践中具有广泛的应用价值。下节课我们将学习化学反应的热效应与物质的量的关系。
高中化学物质的量教案范文多篇 篇三
胶体
1、胶体的定义:分散质粒子直径大小在10-9~10-7m之间的分散系。
2、胶体的分类:
①. 根据分散质微粒组成的状况分类:
如: 胶体胶粒是由许多 等小分子聚集一起形成的微粒,其直径在1nm~100nm之间,这样的胶体叫粒子胶体。 又如:淀粉属高分子化合物,其单个分子的直径在1nm~100nm范围之内,这样的胶体叫分子胶体。
②. 根据分散剂的状态划分:
如:烟、云、雾等的分散剂为气体,这样的胶体叫做气溶胶;AgI溶胶、 溶胶、 溶胶,其分散剂为水,分散剂为液体的胶体叫做液溶胶;有色玻璃、烟水晶均以固体为分散剂,这样的胶体叫做固溶胶。
3、胶体的制备
A. 物理方法
① 机械法:利用机械磨碎法将固体颗粒直接磨成胶粒的大小
② 溶解法:利用高分子化合物分散在合适的溶剂中形成胶体,如蛋白质溶于水,淀粉溶于水、聚乙烯熔于某有机溶剂等。
B. 化学方法
① 水解促进法:FeCl3+3H2O(沸)= (胶体)+3HCl
② 复分解反应法:KI+AgNO3=AgI(胶体)+KNO3 Na2SiO3+2HCl=H2S增大胶粒之间的碰撞机会。如蛋思考:若上述两种反应物的量均为大量,则可观察到什么现象?如何表达对应的两个反应方程式?提示:KI+AgNO3=AgI↓+KNO3(黄色↓)Na2SiO3+2HCl=H2SiO3↓+2NaCl(白色↓)
4、胶体的性质:
① 丁达尔效应——丁达尔效应是粒子对光散射作用的结果,是一种物理现象。丁达尔现象产生的原因,是因为胶体微粒直径大小恰当,当光照射胶粒上时,胶粒将光从各个方面全部反射,胶粒即成一小光源(这一现象叫光的散射),故可明显地看到由无数小光源形成的光亮“通路”。当光照在比较大或小的颗粒或微粒上则无此现象,只发生反射或将光全部吸收的现象,而以溶液和浊液无丁达尔现象,所以丁达尔效应常用于鉴别胶体和其他分散系。
② 布朗运动——在胶体中,由于胶粒在各个方向所受的力不能相互平衡而产生的无规则的运动,称为布朗运动。是胶体稳定的原因之一。
③ 电泳——在外加电场的作用下,胶体的微粒在分散剂里向阴极(或阳极)作定向移动的现象。胶体具有稳定性的重要原因是同一种胶粒带有同种电荷,相互排斥,另外,胶粒在分散力作用下作不停的无规则运动,使其受重力的影响有较大减弱,两者都使其不易聚集,从而使胶体较稳定。
说明:A、电泳现象表明胶粒带电荷,但胶体都是电中性的。胶粒带电的原因:胶体中单个胶粒的体积小,因而胶体中胶粒的表面积大,因而具备吸附能力。有的胶体中的胶粒吸附溶液中的阳离子而带正电;有的则吸附阴离子而带负电胶体的提纯,可采用渗析法来提纯胶体。使分子或离子通过半透膜从胶体里分离出去的操作方法叫渗析法。其原理是胶体粒子不能透过半透膜,而分子和离子可以透过半透膜。但胶体粒子可以透过滤纸,故不能用滤纸提纯胶体。
B、在此要熟悉常见胶体的胶粒所带电性,便于判断和分析一些实际问题。
带正电的胶粒胶体:金属氢氧化物如 、 胶体、金属氧化物。
带负电的胶粒胶体:非金属氧化物、金属硫化物As2S3胶体、硅酸胶体、土壤胶体
特殊:AgI胶粒随着AgNO3和KI相对量不同,而可带正电或负电。若KI过量,则AgI胶粒吸附较多I-而带负电;若AgNO3过量,则因吸附较多Ag+而带正电。当然,胶体中胶粒带电的电荷种类可能与其他因素有关。
C、同种胶体的胶粒带相同的电荷。
D、固溶胶不发生电泳现象。凡是胶粒带电荷的液溶胶,通常都可发生电泳现象。气溶胶在高压电的条件也能发生电泳现象。
胶体根据分散质微粒组成可分为粒子胶体(如 胶体,AgI胶体等)和分子胶体[如淀粉溶液,蛋白质溶液(习惯仍称其溶液,其实分散质微粒直径已达胶体范围),只有粒子胶体的胶粒带电荷,故可产生电泳现象。整个胶体仍呈电中性,所以在外电场作用下作定向移动的是胶粒而非胶体。
④聚沉——胶体分散系中,分散系微粒相互聚集而下沉的现象称为胶体的聚沉。能促使溶胶聚沉的外因有加电解质(酸、碱及盐)、加热、溶胶浓度增大、加胶粒带相反电荷的胶体等。有时胶体在凝聚时,会连同分散剂一道凝结成冻状物质,这种冻状物质叫凝胶。
胶体稳定存在的原因:(1)胶粒小,可被溶剂分子冲击不停地运动,不易下沉或上浮(2)胶粒带同性电荷,同性排斥,不易聚大,因而不下沉或上浮
胶体凝聚的方法:
(1)加入电解质:电解质电离出的阴、阳离子与胶粒所带的电荷发生电性中和,使胶粒间的排斥力下降,胶粒相互结合,导致颗粒直径>10-7m,从而沉降。
能力:离子电荷数,离子半径
阳离子使带负电荷胶粒的胶体凝聚的能力顺序为:Al3+>Fe3+>H+>Mg2+>Na+
阴离子使带正电荷胶粒的胶体凝聚的能力顺序为:SO42->NO3->Cl-
(2)加入带异性电荷胶粒的胶体:(3)加热、光照或射线等:加热可加快胶粒运动速率,增大胶粒之间的碰撞机会。如蛋白质溶液加热,较长时间光照都可使其凝聚甚至变性。
5、胶体的应用
胶体的知识在生活、生产和科研等方面有着重要用途,如常见的有:
① 盐卤点豆腐:将盐卤( )或石膏( )溶液加入豆浆中,使豆腐中的蛋白质和水等物质一起凝聚形成凝胶。
② 肥皂的制取分离 ③ 明矾、 溶液净水④ FeCl3溶液用于伤口止血 ⑤ 江河入海口形成的沙洲⑥ 水泥硬化 ⑦冶金厂大量烟尘用高压电除去⑧ 土壤胶体中离子的吸附和交换过程,保肥作用
⑨ 硅胶的制备: 含水4%的 叫硅胶
⑩ 用同一钢笔灌不同牌号墨水易发生堵塞
高中化学物质的量教案范文多篇 篇四
非金属及其化合物
一、硅元素
无机非金属材料中的主角,在地壳中含量26.3%,次于氧。是一种亲氧元素,以熔点很高的氧化物及硅酸盐形式存在于岩石、沙子和土壤中,占地壳质量90%以上。位于第3周期,第ⅣA族碳的下方。
Si 对比 C
最外层有4个电子,主要形成四价的化合物。
二、二氧化硅(SiO2)
天然存在的二氧化硅称为硅石,包括结晶形和无定形。石英是常见的结晶形二氧化硅,其中无色透明的就是水晶,具有彩色环带状或层状的是玛瑙。二氧化硅晶体为立体网状结构,基本单元是[SiO4],因此有良好的物理和化学性质被广泛应用。(玛瑙饰物,石英坩埚,光导纤维)
物理:熔点高、硬度大、不溶于水、洁净的SiO2无色透光性好
化学:化学稳定性好、除HF外一般不与其他酸反应,可以与强碱(NaOH)反应,是酸性氧化物,在一定的条件下能与碱性氧化物反应
SiO2+4HF == SiF4 ↑+2H2O
SiO2+CaO ===(高温) CaSiO3
SiO2+2NaOH == Na2SiO3+H2O
不能用玻璃瓶装HF,装碱性溶液的试剂瓶应用木塞或胶塞。
三、硅酸(H2SiO3)
酸性很弱(弱于碳酸)溶解度很小,由于SiO2不溶于水,硅酸应用可溶性硅酸盐和其他酸性比硅酸强的酸反应制得。
Na2SiO3+2HCl == H2SiO3↓+2NaCl
硅胶多孔疏松,可作干燥剂,催化剂的载体。
四、硅酸盐
硅酸盐是由硅、氧、金属元素组成的化合物的总称,分布广,结构复杂化学性质稳定。一般不溶于水。(Na2SiO3 、K2SiO3除外)最典型的代表是硅酸钠Na2SiO3 :可溶,其水溶液称作水玻璃和泡花碱,可作肥皂填料、木材防火剂和黏胶剂。常用硅酸盐产品:玻璃、陶瓷、水泥
五、硅单质
与碳相似,有晶体和无定形两种。晶体硅结构类似于金刚石,有金属光泽的灰黑色固体,熔点高(1410℃),硬度大,较脆,常温下化学性质不活泼。是良好的.半导体,应用:半导体晶体管及芯片、光电池、
六、氯元素
位于第三周期第ⅦA族,原子结构:容易得到一个电子形成
氯离子Cl-,为典型的非金属元素,在自然界中以化合态存在。
七、氯气
物理性质:黄绿色气体,有刺激性气味、可溶于水、加压和降温条件下可变为液态(液氯)和固态。
制法:MnO2+4HCl (浓)= MnCl2+2H2O+Cl2
闻法:用手在瓶口轻轻扇动,使少量氯气进入鼻孔。
化学性质:很活泼,有毒,有氧化性,能与大多数金属化合生成金属氯化物(盐)。也能与非金属反应:
2Na+Cl2 ===(点燃) 2NaCl 2Fe+3Cl2===(点燃) 2FeCl3 Cu+Cl2===(点燃) CuCl2
Cl2+H2 ===(点燃) 2HCl 现象:发出苍白色火焰,生成大量白雾。
燃烧不一定有氧气参加,物质并不是只有在氧气中才可以燃烧。燃烧的本质是剧烈的氧化还原反应,所有发光放热的剧烈化学反应都称为燃烧。
Cl2的用途:
①自来水杀菌消毒Cl2+H2O == HCl+HClO 2HClO ===(光照) 2HCl+O2 ↑
1体积的水溶解2体积的氯气形成的溶液为氯水,为浅黄绿色。其中次氯酸HClO有强氧化性和漂泊性,起主要的消毒漂白作用。次氯酸有弱酸性,不稳定,光照或加热分解,因此久置氯水会失效。
②制漂白液、和漂粉精
制漂白液 Cl2+2NaOH=NaCl+NaClO+H2O ,其有效成分NaClO比HClO稳定多,(有效氯35%)和漂粉精(充分反应有效氯70%) 2Cl2+2Ca(OH)2=CaCl2+Ca(ClO)2+2H2O
③与有机物反应,是重要的化学工业物质。
④用于提纯Si、Ge、Ti等半导体和钛
⑤有机化工:合成塑料、橡胶、人造纤维、农药、染料和药品
八、氯离子的检验
使用硝酸银溶液,并用稀硝酸排除干扰离子(CO32-、SO32-)
HCl+AgNO3 == AgCl ↓+HNO3
NaCl+AgNO3 == AgCl ↓+NaNO3
Na2CO3+2AgNO3 ==Ag2CO?3 ↓+2NaNO3
Ag2CO?3+2HNO3 == 2AgNO3+CO2 ↑+H2O
Cl-+Ag+ == AgCl ↓
高中化学物质的量教案范文多篇 篇五
1、物bai质的量(n)
①物质的量是国际单位制中七个基本物理量之一。
②用物质的量可以衡量组成该物质的基本单元(即微观粒子群)的数目的多少,它的单位是摩尔,即一个微观粒子群为1摩尔。
③摩尔是物质的量的单位。摩尔是国际单位制中七个基本单位之一,它的符号是mol。
④ “物质的量”是以摩尔为单位来计量物质所含结构微粒数的物理量。
⑤摩尔的量度对象是构成物质的基本微粒(如分子、原子、离子、质子、中子、电子等)或它们的特定组合。如1molCaCl2可以说含1molCa2+,2molCl-或3mol阴阳离子,或含54mol质子,54mol电子。摩尔不能量度宏观物质,如果说“1mol氢”就违反了使用准则,因为氢是元素名称,不是微粒名称,也不是微粒的符号或化学式。
⑥使用摩尔时必须指明物质微粒的名称或符号或化学式或符号的特定组合。 2.阿伏加德罗常数(NA):
①定义值(标准):以0.012kg(即12克)碳-12原子的数目为标准;1摩任何物质的指定微粒所含的指定微粒数目都是阿伏加德罗常数个。
②近似值(测定值):经过科学测定,阿伏加德罗常数的近似值一般取6.02×1023,单位是mol-1,用符号NA表示。
3.摩尔质量(M):
①定义:1mol某微粒的质量
②定义公式:摩尔质量M=m/n
③摩尔质量的单位:克/摩。
④数值:某物质的摩尔质量在数值上等于该物质的原子量、分子量或化学式式量。⑤注意:摩尔质量有单位,是克/摩,而原子量、分子量或化学式的式量无单位。
4.气体摩尔体积(Vm)
①定义:在标准状况下(0℃,101kPa时),1摩尔气体所占的体积叫做气体摩尔体积。
②定义公式为:Vn=V/n
③数值:气体的摩尔体积约为22.4升/摩(L/mol)。
④注意:对于气体摩尔体积,在使用时一定注意如下几个方面:一个条件(标准状况,符号SPT),一个对象(只限于气体,不管是纯净气体还是混合气体都可),两个数据(“1摩”、“约22.4升”)。如“1mol氧气为22.4升”、“标准状况下1摩水的体积约为22.4升”、“标准状况下NO2的体积约为22.4升”都是不正确的。
⑤理解:我们可以认为22.4升/摩是特定温度和压强(0℃,101kPa)下的气体摩尔体积。当温度和压强发生变化时,气体摩尔体积的数值一般也会发生相应的变化,如273℃,101kPa时,气体的摩尔体积为44.8升/摩。
5.阿伏加德罗定律
①决定物质体积的三因素:物质的体积由物质的微粒数、微粒本身体积、微粒间的距离三者决定。气体体积主要取决于分子数的多少和分子间的距离;同温同压下气体分子间距离基本相等,故有阿伏加德罗定律:在相同的温度和压强下,相同体积的任何气体都含有相同数目的分子。反之也成立。
②阿伏加德罗定律:在相同的温度和压强下,相同体积的任何气体都含有相同数目的分子。
③阿伏加德罗定律及推论适用的前提和对象:可适用于同温、同压的任何气体。
6.阿伏加德罗定律的有关推论:
(其中V、n 、p、ρ、M分别代表气体的体积、物质的量、压强、密度和摩尔质量。)
①同温同压下: ;
②同温同体积: 。
7.标准状况下气体密度的计算
根据初中所学知识,密度=质量&spanide;体积,下面我们取标准状况下1mol某气体,则该气体的质量在数值上等于摩尔质量,体积在数值上等于摩尔体积,所以可得如下计算公式:
标况下气体的密度(g·L-1)=气体的摩尔质量(g·mol-1)&spanide;标况下气体的摩尔体积(L·mol-1)。
8.物质的量浓度
浓度是指一定温度、压强下,一定量溶液中所含溶质的量的多少。常见的浓度有溶液中溶质的质量分数,溶液中溶质的体积分数,以及物质的量浓度
高中化学物质的量教案范文多篇 篇六
一、教材分析
“化学计量在实验中的应用”是以化学基本概念为基础,与实验紧密联系,强调概念在实际中的应用,本节教学对整个高中化学的学习乃至今后继续学习起着重要的指导作用。教材内容具有概念比较多,且抽象又难于理解的特点。教材首先从为什么学习这个物理量入手,指出它是联系微观粒子和宏观物质的纽带,认识引入物质的量在实际应用中的重要意义,即引入这一物理量的重要性和必要性。然后介绍物质的量及其单位,物质的量与物质的粒子数之间、物质的量与质量之间的关系。应注意不要随意拓宽和加深有关内容,加大学生学习的困难。
二、学情分析
对于“物质的量”这个新的“量”和“摩尔”这个新的“单位”,学生是很陌生的,而且也很抽象,但通过学习和生活经验的积累,他们已经知道了生活
中常用的一些“量”和“单位”,如长度、质量、时间、温度,米、千克等。可采用类比方法,类比方法是根据两个或两类对象之间的某些属性上相同,而推出它们在其他属性也相同的一种科学方法。如物质的量与其他学生熟悉的量类比、摩尔与其他国际单位的类比、集合思想的类比等,运用类比思想阐释物质的量及其单位摩尔的意义,能够提高这两个概念与其他概念之间的兼容性,有利于对这两个陌生概念的深刻理解和掌握。
三、教学目标
1.知识与技能
(1)认识物质的量是描述微观粒子集体的一个物理量,认识摩尔是物质的量的基本单
位;了解阿伏加德罗常数的涵义,了解摩尔质量的概念。
(2)了解物质的量与微观粒子数之间的换算关系;了解物质的量、物质的质量、摩尔
质量之间的换算关系。
2.过程与方法
(1)通过类比的思想帮助学生更好的理解、运用和巩固概念。
(2)通过阅读教材、参考资料和联系生活实际,培养学生自学的习惯、探究的意识。
(3)体验学习物质的量这一物理量的重要性和必要性。
3.情感态度和价值观
(1)使学生认识到微观和宏观的相互转化是研究化学问题的科学方法之一,培养学生尊重科学的思想。
(2)调动学生参与概念的形成过程,体验科学探究的艰辛和喜悦。
四、教学重点与难点
1.教学重点
(1)物质的量的概念;
(2)物质的量和微粒数之间的相互转化;
(3)阿伏伽德罗常数的涵义;
(4)通过物质的量、质量、摩尔质量计算实际问题。
2.教学难点
物质的量的概念。
五、教学准备
多媒体、黑板
六、教学方法
采用创设情境方式,通过故事(一粒米的称量)和生活实例,以聚微成宏的科学思维方式,引出新的物理量—物质的量,搭建起宏观与微观的桥梁。通过学生列举生活中的常用单位(箱、包、打等)与抽象概念类比、国际单位之间的类比、集合思想的类比教学,将抽象的概念形象化,让学生感受概念的生成过程,初步形成物质的量的概念并理解其重要性。