数学发展史小论文【精彩3篇】

数学发展史小论文 篇一

数学作为一门学科,其发展历史可以追溯到几千年前。从最早的古代文明开始,数学就成为人类思维和科学研究的基石。本文将从古代数学的起源开始,探讨数学的发展历程和对人类社会的影响。

古代数学的起源可以追溯到古埃及和美索不达米亚文明。这些文明中的数学主要用于土地测量、建筑和贸易等实际问题。例如,埃及人用简单的几何学来测量尼罗河的洪水,以确定农田的灌溉计划。美索不达米亚人则开发了一套复杂的计算方法,用于贸易和建筑工程。

古希腊是数学发展的重要时期。在希腊,数学从实际问题的解决转向了纯粹的理论研究。毕达哥拉斯学派提出了一系列数学原理,如毕达哥拉斯定理和黄金分割。这些原理不仅对几何学有重要影响,也影响了后来的数学发展。欧几里得的《几何原本》是古希腊数学的巅峰之作,系统地总结了已有的几何知识,并提出了一系列的证明方法。

中世纪是数学发展的低谷时期。由于宗教和哲学的影响,数学的研究受到限制。然而,在阿拉伯世界,数学得到了快速发展。阿拉伯学者翻译了古希腊和印度的数学著作,并进行了深入研究。他们引入了阿拉伯数字系统,改进了计算方法,并在代数、三角学和几何学等领域做出了重要贡献。这些成果通过欧洲的十字军东征传入欧洲,为文艺复兴时期的数学发展奠定了基础。

近代数学发展的一个重要里程碑是微积分的发现。牛顿和莱布尼茨几乎同时独立地发现了微积分的基本原理,并开创了微积分的研究领域。微积分的发现对物理学和工程学等领域产生了深远影响,并推动了科学革命的进程。同时,数学的形式化和公理化也在这个时期得到了发展,为数学的严谨性和准确性奠定了基础。

现代数学已经成为一门巨大而复杂的学科。从代数学到几何学,从概率论到数论,数学的分支越来越多。数学的应用范围也越来越广泛,从物理学到经济学,从计算机科学到人工智能,都离不开数学的支持。数学的发展不仅为科学和技术进步提供了基础,也对人类思维方式和文化产生了深远影响。

数学作为一门学科的发展历程是人类智慧的结晶。从古代文明到现代科学,数学一直在推动人类社会的进步。通过对数学发展历史的了解,我们能够更好地欣赏数学的美丽和重要性,也能够更好地理解数学在解决实际问题和推动科学发展中的作用。

数学发展史小论文 篇二

数学作为一门学科的发展历程,不仅是人类智慧的结晶,也反映了人类社会的进步和文化的演变。本文将从数学的应用角度,探讨数学在不同历史时期的发展和对社会的影响。

在古代,数学的应用主要集中在土地测量、贸易和建筑等领域。古埃及人用几何学来测量尼罗河的洪水,以确定农田的灌溉计划。美索不达米亚人开发了一套复杂的计算方法,用于贸易和建筑工程。这些应用需求促使数学的发展,同时也使得数学成为实际问题解决的工具。

古希腊的数学发展则更加注重纯粹的理论研究。毕达哥拉斯学派提出了一系列数学原理,如毕达哥拉斯定理和黄金分割。欧几里得的《几何原本》系统总结了已有的几何知识,并提出了一系列的证明方法。这些理论的发展为后来的数学研究奠定了基础,并影响了后世数学家的思维方式和方法。

中世纪是数学发展的低谷时期,数学的应用受到宗教和哲学的限制。然而,在阿拉伯世界,数学得到了快速发展。阿拉伯学者翻译了古希腊和印度的数学著作,并进行了深入研究。他们引入了阿拉伯数字系统,改进了计算方法,并在代数、三角学和几何学等领域做出了重要贡献。这些成果通过欧洲的十字军东征传入欧洲,为文艺复兴时期的数学发展奠定了基础。

近代数学的发展主要集中在微积分和数学分析等领域。牛顿和莱布尼茨的微积分理论为物理学和工程学的发展提供了基础。同时,数学的形式化和公理化也在这个时期得到了发展,为数学的严谨性和准确性奠定了基础。

现代数学的应用范围越来越广泛。从物理学到经济学,从计算机科学到人工智能,都离不开数学的支持。数学模型的建立和数学方法的应用成为解决实际问题和推动科学发展的重要工具。同时,数学的发展也激发了人类的创造力和思维方式的变革。

总结而言,数学作为一门学科的发展历程不仅反映了人类智慧的结晶,也推动了社会的进步和文化的演变。通过对数学发展历史的了解,我们能够更好地认识数学的重要性和应用价值,也能够更好地理解数学在解决实际问题和推动科学发展中的作用。

数学发展史小论文 篇三

数学发展史小论文

  无论是身处学校还是步入社会,大家都不可避免地要接触到论文吧,论文是我们对某个问题进行深入研究的文章。那么,怎么去写论文呢?以下是小编整理的数学发展史小论文,仅供参考,大家一起来看看吧。

  中华民族是一个具有悠久历史和灿烂文化的民族,在灿烂的文化瑰宝中数学在世界数学发展史中也同样具有许多耀眼的光环。研究中国的数学发展历程有着重要的现实意义。

  1中国古代数学的发展史

  1.1起源与早期发展

  数学是研究数和形的科学,是中国古代科学中一门重要的学科。中国数学发展的萌芽期可以追溯到先秦时期,最早的记数法在殷墟出土的甲骨文卜辞中可以找到记数的文字。如独立的记数符号一到十,百、千、万,最大的数字为三万,还有十进制的记数法。

  在春秋时期出现中国最古老的计算工具——算筹,使用算筹进行计算称为筹算,中国古代数学的最大特点就是建立在筹算基础之上。古代的算筹多为竹子制成的同样长短和粗细的小棍子,用算筹记数有纵、横两种

方式,个位用纵式,十位用横式,以此类推,并以空位表示零。这与西方及阿拉伯数学是明显不同的。

  在几何学方面,在《史记夏本记》中记录到夏禹治水时已使用了规、矩、准、绳等作图和测量工具,勾股定理中的勾三股四弦五已被发现。

  1.2中国数学体系的形成与奠基时期

  这一时期包括秦汉、魏晋、南北朝,共400年间的数学发展历史。中国古代的数学体系形成在秦汉时期,随着数学知识的不断系统化、理论化,相应的数学专书也陆续出现,如西汉初的《算数书》、西汉末年的《周髀算经》、东汉初年的《九章算术》以及南北朝时期的《孙子算经》、《夏侯阳算经》、《张丘建算经》等一系列算学著作。

  《周髀算经》编纂于西汉末年,提出勾股定理的特例及普遍形式以及测太阳高、远的陈子测日法;《九章算术》成书于东汉初年,以问题形式编写,分属于方田、粟米、衰分、少广、商功、均输、盈不足、方程和勾股九章,特点在于注重理论联系实际,形成了以筹算为中心的数学体系。

  中国数学在魏晋时期有了较大的发展,其中赵爽和刘徽的工作被认为是中国古代数学理论体系的开端。赵爽证明了数学定理和公式,详尽注释了《周髀算经》,其中一段530余字的勾股圆方图注文是数学史上极有价值的文献。刘徽的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产。

  在南北朝时期数学的发展依然蓬勃,出现了《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学著作。最具代表性的著作是祖冲之、祖父子撰写的《缀术》,圆周率精确到小数点后六位,推导出球体体积的正确公式,发展了二次与三次方程的解法。

  1.3中国古代数学发展的盛衰时期

  宋、元两代是中国古代数学空前繁荣,硕果累累的全盛时期。出现了一批著名的数学家和数学著作,其中最具代表性的数学家是秦九韶和杨辉。秦九韶在其著作的《数学九章》中创造了大衍求1术(整数论中的一次同余式求解法),被称为中国剩余定理,在近代数学和现代电子计算设计中起到重要的作用。他所论的正负开方术(数学高次方程根法),被称为秦九韶程序。现在世界各国从小学、中学、大学的数学课程,几乎都接触到他的定理、定律、解题原则。杨辉,中国南宋时期杰出的数学家和数学教育家,他在1261年所着的《详解九章算法》一书中,给出了二项式系数在三角形中的一种几何排列,这个三角形数表称为杨辉三角。杨辉三角在西方又称为帕斯卡三角形,但杨辉比帕斯卡早400多年发现。

  随后从十四世纪中叶明王朝建立到明末的1582年,数学除了珠算外出现全面衰弱的局面。明代最大的成就是珠算的普及,出现了许多珠算读本,珠算理论已成系统,标志着从筹算到珠算转变的完成。在现代计算机出现之前,珠算盘是世界上简便而有效的计算工具。但由于珠算流行,筹算几乎绝迹,建立在筹算基础上的古代数学也逐渐失传,数学出现长期停滞。

  2中国近现代数学的发展史

  中国近现代数学发展时期是指从20世纪初至今的一段时间,开始于清末民初的大批留学生的回国后,各地大学的数学教育有了明显的起色,很多回国人员后成为著名的数学家和数学教育家,在世界都具有重要的影响,为中国近现代数学发展做出了重要贡献,这些著名的数学家及其贡献主要有:

  2.1陈景润及其代表作

  陈景润是世界著名解析数论学家之一。1966年,陈景润攻克了世界著名数学难题哥德巴赫猜想中的(1+2),在哥德巴赫猜想的研究上居世界领先地位,距摘取这颗数论皇冠上的明珠(1+1)只是一步之遥,于1978年和1982年两次收到国际数学家大会的邀请,在其他数论问题的成就在世界领域也是遥遥领先的。

  2.2华罗庚及其贡献

  华罗庚是近代世界著名的中国数学家,对数学的贡献是多方面的'。在数论、矩阵几何学、典型群、自守函数论、多个复变函数论、偏微分方程及高维数值积分等领域都做出了卓越的贡献。他解决了高斯完整三角和的估计,推进华林问题、塔里问题的结果,在圆法与三角和估计法方面的结果长期居世界领先地位,著作有《堆垒素数论》、《数论导引》、《典型域上的多元复变量函数论》及合着《数论在近似分析中的应用》。他在普及应用数学方法、培养青年数学家等上都有特殊贡献。

  2.3苏步青及其成就

  苏步青是中国科学院院士,国内外享有成名的数学家。主要从事微分几何学和计算几何学等方面的研究。他在仿射微分几何学和射影微分几何学研究方面取得出色成果,在一般空间微分几何学、高维空间共轭理论、几何外型设计、计算机辅助几何设计等方面取得突出成就,对培养中国早期的数学人才曾起了巨大的推进作用。

  2.4吴文俊及其贡献

  吴文俊是数学界的战略科学家,现任中国科学院院士,第三世界科学院院士。曾获得首届国家自然科学一等奖(1956)、中国科学院自然科学一等奖(1979)、第三世界科学院数学奖(1990)、陈嘉庚数理科学奖(1993)、首届香港求是科技基金会杰出科学家奖(1994)、首届国家最高科技奖(2000)、第三届邵逸夫数学奖(2006)。他在拓扑学、自动推理、机器证明、代数几何、中国数学史、对策论等研究领域均有杰出的贡献,他的吴方法在国际机器证明领域产生巨大的影响,有广泛重要的应用价值。

  3研究中国数学发展史的重要意义

  与自然科学相比,数学是一门积累性科学,国内外许多著名的数学大师都对数学史都有着深远的研究。研究数学发展史可以为我们提供经验教训和历史借鉴,使我们的科学研究方向少走弯路或错路。从数学发展史中,我们要明白数学是一种文化,是形成现代文化的主要力量,是文化极其重要的因素。数学的概念来源于经验,与自然科学的生活世纪密不可分,在经过数学家严格的加工与推理后形成数学这门科学。研究数学的发展历史,弄清一个概念的来龙去脉,一个理论的兴旺和衰落,影响一种重要思想的产生的历史因素,有利于了解数学的现状,指导数学的未来,更好地接受以及学习数学,从历史的发展中获得借鉴和汲取教益,促进现实的科学研究,从而使数学与我们的生活更加贴切。

  参考文献:

  [1]王青建.数学史:从书斋到课堂[J].自然科学史研究,2004,2:152.

  [2]郁组权着.中国古算解趣[M].北京:科学出版社,2004,10:138-141:216-218.

  [3]李文林.数学史概论(第二版)[M].北京:高等教育出版社,2002.

相关文章

紫砂方形壶的历史名作及制作要领(优质3篇)

摘要: 宜兴紫砂 ,历来有方匪一式,圆不一相之说。紫砂茶具自明代中期开始,由于文人墨客的赞美与参与,为文人雅士与达官贵人所喜欢,紫砂壶的造型千变万化。但万变不离其宗,总是在方形与圆形之中变化,方形紫砂...
论文2017-01-02
紫砂方形壶的历史名作及制作要领(优质3篇)

本科毕业生论文答辩的技巧(优秀3篇)

一、本科毕业生论文答辩的技巧 对于每一位即将本科毕业的同学,在完成毕业论文后都要参加毕业论文答辩,这是完成本科学业的教学环节中的重要组成部分.如何准备和参加毕业论文答辩,是每位同学十分关心的事情. 我...
论文2016-02-04
本科毕业生论文答辩的技巧(优秀3篇)

和谐社会的思想哲学论文(精选3篇)

1确定性,追求和谐的知识倾向 在古希腊哲学中存在一种追求知识的倾向,他们把一个与多个、不变与变化、真理与谬论、善良与邪恶一一对立起来,以此作为寻找世界统一的观念,追寻事物之后的那些不变的规律和这些事物...
论文2015-04-04
和谐社会的思想哲学论文(精选3篇)

发展中国家对华反倾销的特征、原因及对策分析论文【实用3篇】

【论文摘要】 本文采用理论研究和实证研究相结合的方法,研究了发展中国家对华反倾销的特征、原因及对策。研究认为:发展中国家对华反倾销呈现出:立法不完善,在处理反倾销案件时随意性大,不透明;反倾销国别、数...
论文2019-01-07
发展中国家对华反倾销的特征、原因及对策分析论文【实用3篇】

历史教育论文参考文献(通用5篇)

历史教育论文参考文献有哪些呢?历史教育论文参考文献是撰写历史教育论文的重要的组成部分。欢迎阅读小编整理的历史教育论文参考文献,希望能够帮到大家。 历史教育论文参考文献篇一: [1]邢开亮.基于新课程理...
论文2013-05-07
历史教育论文参考文献(通用5篇)

中国对外贸易经济的现状及对策分析论文【精选3篇】

自从改革开放至今,我国对外贸易取得了长远发展,对外贸易的总量持续稳定增加。但是,我国对外贸易的经济效益却一直处于较低的水平中,自从二十一世纪九十年代至今,我国的对外贸易经济效益呈现出下滑的趋势,这已经...
论文2017-09-01
中国对外贸易经济的现状及对策分析论文【精选3篇】