浅谈汽车车载网络的应用论文(优质4篇)
浅谈汽车车载网络的应用论文 篇一
随着科技的不断发展,汽车车载网络正逐渐成为汽车行业的热门话题。汽车车载网络是指在汽车中使用无线通信技术连接各种设备和系统,实现车辆内部和车辆与外部网络的互联互通。本文将从汽车车载网络的发展背景、应用领域和未来趋势等方面进行探讨。
首先,我们来看一下汽车车载网络的发展背景。随着人们对汽车生活的需求不断增长,汽车制造商开始将智能化和互联网技术应用到汽车中。汽车车载网络的出现,使得车辆内部的各种设备和系统可以通过无线通信进行连接,实现信息的共享和传输。这不仅提升了车辆的安全性和便利性,还为用户提供了更多的功能和服务。
其次,我们来探讨一下汽车车载网络的应用领域。汽车车载网络的应用非常广泛,涵盖了车辆安全、车载娱乐、车辆管理等多个方面。在车辆安全方面,汽车车载网络可以通过与外部交通管理系统的连接,提供实时的交通信息和导航功能,帮助驾驶员避免拥堵和事故。在车载娱乐方面,汽车车载网络可以实现多媒体资源的共享和播放,让车内乘客享受丰富多样的娱乐内容。在车辆管理方面,汽车车载网络可以通过远程控制和监测,实现对车辆状态的实时监测和管理。
最后,我们来展望一下汽车车载网络的未来趋势。随着5G技术的逐渐普及和应用,汽车车载网络将进一步发展。5G技术具有更高的网速和更低的延迟,可以支持更多的设备和更复杂的应用场景。未来的汽车车载网络将实现更高级的自动驾驶功能、更智能的车辆管理系统和更丰富的车载娱乐体验。同时,随着人工智能技术的不断进步,汽车车载网络将更加智能化,能够主动感知和适应驾驶员和乘客的需求。
综上所述,汽车车载网络的应用前景广阔。它不仅提升了车辆的安全性和便利性,还为用户带来了更多的功能和服务。随着科技的不断发展,我们对汽车车载网络的期望也越来越高。相信在不久的将来,汽车车载网络将成为汽车行业的重要组成部分,为人们的出行带来更加便捷和舒适的体验。
浅谈汽车车载网络的应用论文 篇二
随着科技的不断进步,汽车车载网络的应用正在不断扩大。汽车车载网络是指在汽车中使用无线通信技术连接各种设备和系统,实现车辆内部和车辆与外部网络的互联互通。本文将从汽车车载网络的应用现状、挑战和解决方案等方面进行讨论。
首先,我们来看一下汽车车载网络的应用现状。目前,汽车车载网络已经广泛应用于车辆安全、车载娱乐、车辆管理等多个领域。在车辆安全方面,汽车车载网络可以通过与外部交通管理系统的连接,提供实时的交通信息和导航功能,帮助驾驶员避免拥堵和事故。在车载娱乐方面,汽车车载网络可以实现多媒体资源的共享和播放,让车内乘客享受丰富多样的娱乐内容。在车辆管理方面,汽车车载网络可以通过远程控制和监测,实现对车辆状态的实时监测和管理。
然而,汽车车载网络的应用也面临着一些挑战。首先是安全性问题。由于汽车车载网络连接的设备和系统众多,网络安全性成为一个重要的考量因素。汽车车载网络需要具备强大的安全防护能力,以防止黑客攻击和信息泄露。其次是网络带宽问题。随着汽车车载网络应用的扩大,对网络带宽的需求也越来越大。因此,汽车车载网络需要具备高速、稳定的网络连接,以满足各种应用的需求。
为了解决这些挑战,我们需要采取一些解决方案。首先是加强网络安全保护。汽车车载网络需要采用多层次、多维度的安全措施,包括数据加密、身份认证、访问控制等,以保护用户的隐私和数据安全。其次是提高网络带宽。汽车车载网络需要采用高速、稳定的网络连接,如5G技术,以满足各种应用的需求。此外,还可以采用边缘计算技术,将一部分计算和存储任务分配到车辆内部,减少对网络带宽的需求。
综上所述,汽车车载网络的应用正在不断扩大,但同时也面临着一些挑战。我们需要加强网络安全保护,提高网络带宽,以满足用户对汽车车载网络的需求。相信随着科技的不断进步,汽车车载网络将会在未来发展得更加成熟和完善,为人们的出行带来更多的便利和舒适。
浅谈汽车车载网络的应用论文 篇三
摘要:车载是汽车技术的必然趋势,本文就车载网络形成的必要性及其进行了系统地,以便更好地理解新一代汽车电子控制系统。
关键词:车载网络车身系统动力传动系统安全系统信息系统
一、引言
随着汽车日新月异的发展,现代汽车上使用了大量的电子控制装置,许多中高档轿车上采用了十几个甚至二十几个电控单元,而每一个电控单元都需要与相关的多个传感器和执行器发生通讯,并且各控制单元间也需要进行信息交换,如果每项信息都通过各自独立的数据线进行传输,这样会导致电控单元针脚数增加,整个电控系统的线束和插接件也会增加,故障率也会增加等诸多。
为了简化线路,提高各电控单元之间的通信速度,降低故障频率,一种新型的数据网络CAN数据总线应运而生。CAN总线具有实时性强、传输距离较远、抗电磁干扰能力强;在自动化电子领域的汽车发动机控制部件、传感器、抗滑系统等应用中,CAN的位速率可高达1Mbps。同时,它可以廉价地用于运载工具电气系统中。
二、CAN总线简介
CAN,全称为“ControllerAreaNetwork”,即控制器局域网,是由ISO定义的串行通讯总线,主要用来实现车载各电控单元之间的信息交换,形成车载网络系统,CAN数据总线又称为CAN—BUS总线。它具有信息共享,减少了导线数量,大大减轻配线束的重量,控制单元和控制单元插脚最小化,提高可靠性和可维修性等优点。
CAN被设计作为汽车环境中的微控制器通信,在车载各电子控制装置ECU之间交换信息,形成汽车电子控制网络。其工作采用单片机作为直接控制单元,用于对传感器和执行部件的直接控制。每个单片机都是控制网络上的一个节点,一辆汽车不管有多少块电控单元,不管信息容量有多大,每块电控单元都只需引出两条导线共同接在节点上,这两条导线就称作数据总线(Bus)。CAN数据总线中数据传递就像一个电话会议,一个电话用户就相当于控制单元,它将数据“讲入”网络中,其他用户通过网络“接听”数据,对这组数据感兴趣的用户就会利用数据,不感兴趣的用户可以忽略该数据。
一个由CAN总线构成的单一网络中,上可以挂接无数个节点,但实际应用中,所挂接的节点数目会受到网络硬件的电气特性或延迟时间的限制。使用机网络进行通信的前提是,各电控单元必须使用和解读相同的“电子语言”,这种语言称“协议”。汽车电脑网络常见的传输协议有多种,为了并实现与众多的控制与测试仪器之间的数据交换,就必须制定标准的通信协议。随着CAN在各种领域的应用和推广,1991年9月PhilipsSemiconductors制定并发布了CAN技术规范(Version2.0)。该技术包括A和B两部分。2.0A给出了CAN报文标准格式,而2.0B给出了标准的和扩展的两种格式。1993年11月ISO颁布了道路交通运输工具—数据信息交换—高速通信局域网国际标准ISO11898,为控制局域网的标准化和规范化铺平了道路。美国的汽车工程学会SAE2000年提出的J1939,成为货车和客车中控制器局域网的通用标准。
三、CAN-BUS数据总线的组成与结构
CAN-BUS系统主要包括以下部件:CAN控制器、CAN收发器、CAN-BUS数据传输线和CAN-BUS终端电阻。:
1.CAN控制器,CAN收发器
CAN-BUS上的每个控制单元中均设有一个CAN控制器和一个CAN收发器。CAN控制器主要用来接收微处理器传来的信息,对这些信息进行处理并传给CAN收发器,同时CAN控制器也接收来自CAN收发器传来的数据,对这些数据进行处理,并传给控制单元的微处理器。
CAN收发器用来接收CAN控制器送来的数据,并将其发送到CAN数据传输总线上,同时CAN收发器也接收CAN数据总线上的数据,并将其传给CAN控制器。
2.数据总线终端电阻
CAN-BUS数据总线两端通过终端电阻连接,终端电阻可以防止数据在到达线路终端后象回声一样返回,并因此而干扰原始数据,从而保证了数据的正确传送,终端电阻装在控制单元内。
3.数据传输总线
数据传输总线大部分车型用的是两条双向数据线,分为高位﹝CAN-H﹞和低位﹝CAN-L﹞数据线。为了防止外界电磁波干扰和向外辐射,两条数据线缠绕在一起,要求至少每2.5cm就要扭绞一次,两条线上的电位是相反的,电压的和总等于常值。
四、车载网络的应用分类
车载网络按照应用加以划分,大致可以分为4个系统:车身系统、动力传动系统、安全系统、信息系统。
1.动力传动系统
在动力传动系统内,动力传动系统模块的位置比较集中,可固定在一处,利用网络将发动机舱内设置的模块连接起来。在将汽车的主要因素—跑、停止与拐弯这些功能用网络连接起来时,就需要高速网络。
动力CAN数据总线一般连接3块电脑,它们是发动机、ABS/EDL及自动变速器电脑(动力CAN数据总线实际可以连接安全气囊、四轮驱动与组合仪表等电脑)。总线可以同时传递10组数据,发动机电脑5组、ABS/EDL电脑3组和自动变速器电脑2组。数据总线以500Kbit/s速率传递数据,每一数据组传递大约需要0.25ms,每一电控单元7~20ms发送一次数据。优先权顺序为ABS/EDL电控单元→发动机电控单元→自动变速器电控单元。
在动力传动系统中,数据传递应尽可能快速,以便及时利用数据,所以需要一个高性能的发送器,高速发送器会加快点火系统间的数据传递,这样使接收到的数据立即到下一个点火脉冲中去。CAN数据总线连接点通常置于控制单元外部的线束中,在特殊情况下,连接点也可能设在发动机电控单元内部。
2.车身系统
与动力传动系统相比,汽车上的各处都配置有车身系统的部件。因此,线束变长,容易受到干扰的。为了防干扰应尽量降低通信速度。在车身系统中,因为人机接口的模块、节点的数量增加,通信速度控制将不是,但成本相对增加,对此,人们正在摸索更廉价的解决方案,常常采用直连总线及辅助总线。
舒适CAN数据总线连接一般连接七个控制单元,包括中央控制单元、车前车后各一个受控单元及四个车门的控制单元。舒适CAN数据传递有七大功能:中控门锁、电动窗、照明开关、空调、组合仪表、后视境加热及自诊断功能。控制单元的各条传输线以星状形式汇聚一点。这样做的好处是:如果一个控制单元发生故障,其他控制单元仍可发送各自的数据。该系统使经过车门的导线数量减少,线路变得简单。如果线路中某处出现对地短路,对正极短路或线路间短路,CAN系统会立即转为应急模式运行或转为单线模式运行。
数据总线以62.5Kbit/s速率传递数据,每一组数据传递大约需要1ms,每个电控单元20ms发送一次数据。优先权顺序为:中央控制单元→驾驶员侧车门控制单元→前排乘客侧车门控制单元→左后车门控制单元→右后车门控制单元。由于舒适系统中的.数据可以用较低的速率传递,所以发送器性能比动力传动系统发送器的性能低。
整个汽车车身系统电路主要有三大块:主控单元电路、受控单元电路、门控单元电路。
主控单元按收开关信号之后,先进行处理,然后通过CAN总线把控制指令发送给各受控端,各受控端响应后作出相应的动作。车前、车后控制端只接收主控端的指令,按主控端的要求执行,并把执行的结果反馈给主控端。门控单元不但通过CAN总接收主控端的指令,还接收车门上的开关信号输入。根据指令和开关信号,门控单元会做出相应动作,然后把执行结果发往主控单元。
(1)安全系统
这是指根据多个传感器的信息使安全气囊启动的系统,由于安全系统涉及到人的生命安全,加之在汽车中气囊数目很多,碰撞传感器多等原因,要求安全系统必须具备通信速度快、通信可靠性高等特点。
(2)信息系统
信息系统在车上的应用很广泛,例如车载电话、音响等系统的应用。对信息系统通信总线的要求是:容量大、通信速度非常高。通信媒体一般采用光纤或铜线,因为此两种介质传输的速度非常快,能满足信息系统的高速化需求。
五、CAN总线技术在汽车中应用的关键技术
利用CAN总线构建一个车内,需要解决的关键技术问题有:
(1)总线传输信息的速率、容量、优先等级、节点容量等技术问题
(2)高电磁干扰环境下的可靠数据传输
(3)确定最大传输时的延时大小
(4)网络的容错技术
(5)网络的监控和故障诊断功能
(6)实时控制网络的时间特性
(7)安装与维护中的布线
(8)网络节点的增加与软硬件更新(可扩展性)
六、结束语
CAN总线作为一种可靠的汽车机网络总线,现已开始在先进的汽车上得到应用,从而使得各汽车计算机控制单元能够通过CAN总线共享所有的信息和资源,以达到简化布线、减少传感器数量、避免控制功能重复、提高系统可靠性和可维护性、降低成本、更好地匹配和协调各个控制系统之目的,随着汽车技术的,具有高度灵活性、简单的扩展性、优良的抗干扰性和纠错能力的CAN总线通信协议必将在汽车电控系统中得到更广泛的应用。
[1]王箴.CAN总线在汽车中应用[N].汽车报.2004.
[2]邬宽明.CAN总线原理和应用系统设计.航空航天大学出版社.1996.
[3]周震.基于CAN总线的车身控制模块.南京航空航天大学.2005.
[4]李刚炎,于翔鹏.CAN总线技术及其在汽车中的应用.中国论文在线.
[5]杨维俊.汽车车载网络系统.北京:机械出版社.2006.
[6]李东江,张大成.汽车车载网络系统原理与检修.北京:机械工业出版社.2005.
浅谈汽车车载网络的应用论文 篇四
1、MOST网络发展历史
1MOST网络技术是一个由MOST合作组织制定的以通信协议为基础的汽车多媒体信息传输网络技术,其采用光纤线或双绞线作为物理传输介质,实现车内多媒体设备的互联互通。1996年,梅赛德斯以其D2B系统为基础,并与宝马和SMSC合作,开始对MOST进行讨论,并且决定和其他汽车生产商共同进行开发。1998年,宝马、奔驰、别克和SMSC以德国民法合伙人的方式成立了MOST合作组织,之后奥迪很快也加入了该组织。MOST合作组织成立后便致力于协议的快速标准化工作,并迅速地将实际系统搭载于汽车上。图1是2000年ITS世界代表大会上,MOST组织展览厅内奥迪、宝马、梅塞德斯和大众的相关车型[5],而现在已经有140种车型应用了MOST网络技术。MOST组织已经发布了三代MOST网络技术规范,分别为MOST25、MOST50和MOST150,而下一代网络带宽能够达到1~5Gbps的网络规范也正在研发当中。虽然每一代MOST网络规范都有些不同,但是其基本特点没有变化,接下来将对其进行详述。
1.1MOST网络基本特点
MOST网络是一个点到点的光纤/电气闭环同步网络,它由一个时间主节点和若干个时间从节点构成,在传输数据信号的同时也传输时钟信号[6,7]。该网络中最多有64个节点,节点之间的最大距离为10米。它相对于传统的车载信息娱乐系统方案而言具有使用线束更少更轻、网络抗电磁干扰能力更强、应用的添加和删除更为方便等优点。图2是MOST网络与OSI网络模型的对比图,图中功能块层完成了网络中设备节点的应用功能和系统功能。网络服务应用套接字层与网络服务基础层共同组成了网络服务功能,控制报文的收发与流数据信道的连接和释放等都由该服务完成。MOST智能网络接口控制器层主要负责套接字管理、智能器件管理、网络保护模式设置和硬件应用看门狗定时器设置等。而物理层则由光学物理层和电气物理层组成,MOST网络信号可以在光纤线或双绞线中进行传输。在MOST网络上,帧是数据传输的基本单
元,每个帧又分为三个数据域,分别用于传输控制字节、流数据与异步数据。因为数据帧定时发送,其频率为44.1KHz或48KHz。所以网络中传输的相邻数据帧的相同数据域构成了用于传输对应信息的连续信道,即控制信道、流数据信道和异步数据信道。
1.2MOST网络研究现状
从MOST网络技术产生至今,国内外许多科研人员对其进行了深入的研究。文献[8]首先将MOST网络技术引入到了国内,文中对MOST网络技术进行了综述,较详细地介绍了MOST网络的功能特点、MOST网络的基本结构和MOST网络的设备组成等,并对MOST网络的发展和应用进行了讨论。文献[9]设计并实现了MOST网络的主控制器,为MOST网络技术在国内的发展提供了理论和实践的基础。文献[10]设计了MOST网络音频播放节点,为原型节点的开发做了铺垫,随后文献[11]和文献[12]实现了音频流媒体数据传输和播放功能。文献[13]实现了基于MOST网络的DVD节点,而文献[14]实现了基于MOST网络的收音机节点。文献[15-17]对基于MOST网络的车载语音接口进行了研究,实现了通过语音控制MOST网络。文献[18-22]以各自的设计思想实现了MOST网络与CAN网络的网关,文献[23]使用静态段和控制报文实现了MOST网络和FlexRay网络的网关,这些网关使整车的网络可以进行完整可信的通信,增强了整车的功能性、舒适性和安全性。文献[24]对MOST网络服务进行了改进,使MOST网络服务可以被事件驱动,并使用层次状态机,MOST网络程序的开发变得更加的容易。文献[25]提出了基于FSM模型的车载MOST网络管理系统,该系统可以增强车载MOST网络的灵活性、健壮性和容错性,满足车载信息娱乐系统对即插即用工作方式的需求。而文献[26]则提出了MOST网络连接管理策略,该策略可以有效地提高MOST网络带宽利用率。文献[27-30]在电源管理和能量优化方面对MOST网络进行了深入的研究,使MOST网络可以集中唤醒进入睡眠状态的节点,并且降低了系统的总功耗。
1.3MOST网络未来趋势
MOST网络技术历经15年的发展已经取得了一定的成果,在未来的前进道路上它将会在以下三方面取得进步。首先,MOST组织在其定期发布的MOSTInformative里提到MOST网络会在拓扑结构方面增加星型、菊花链型和树形等拓扑结构,改善环型网络拓扑结构如果断开则整个网络不可用的缺点。然后,在降低成本方面,MOST150网络使用的是光纤线进行信号传输,在保证传输速率150Mbps的前提下可以在物理层增加非屏蔽双绞线(6类双绞线)和同轴电缆作为传输介质,这样可以拓宽其市场,使更多的车型可以搭载MOST网络。最后,在兼容以太网络方面,车载以太网络技术是MOST网络技术的强劲竞争对手,虽然MOST150网络规范已经提出每个设备节点会有以太网络MAC地址,并提供以太网络数据信道来传输以太网络帧,但是仍有上层软件兼容等许多问题需要解决。而据悉,一汽、比亚迪、长城等车厂都在积极地研究MOST网络,MOST网络技术即将迎来在国内的大发展。
2IDB-1394网络技术I
DB-1394网络技术是IEEE-1394技术的汽车版本,其传输速率可高达400Mbps,它的高带宽确保了音视频娱乐应用的高保真传输,并且可以更迅速的传输到想要播放的终端。除此之外,其即插即用的特性,也正符合了消费者对于产品的需求,没有过多繁杂且不必要的操作。IDB-1394为了满足信号的高速传输需求,并且同时考虑到车上的电磁干扰环境,所以其采用光纤线作为物理传输介质,但是为了降低成本,其使用铜导线作为物理传输介质的技术标准IDB-1394Cu也在实验当中。IDB-1394还提供数字传输内容保护DTCP(DigitalTransmissionCon-tentProtection)技术,其可以有效地保护版权,防止传输内容的泄露[31]。目前人们对于IDB-1394网络技术的关注度越来越高,并且期望其在将来的市场上能够得到更广泛的应用。虽然它拥有灵活的协议栈,但是现在只有少数日系车厂支持IDB-1394网络技术,并且在许多方面它仍需要提高。
3车载以太网络技术
在以太网络发展的30多年里,它凭借低廉的价格、强大的数据传输能力和良好的可扩展性等优点,成为了应用最为普遍的局域网络技术[32,33]。随着工业以太网络技术的发展和应用,人们对于以太网络逐渐产生了实时性的要求,这样便产生了实时以太网络RTE(RealTimeEthernet)[34]。2011年单对非屏蔽双绞线通信技术的问世,并且汽车驾驶员辅助、娱乐和通信等各方面应用的涌现,因此以宝马公司为首,人们为了提高车载网络的带宽和通用性,以实时以太网络协议为前提,以单对非屏蔽双绞线通信技术为基础,提出了车载以太网络技术。
3.1实时以太网络协议
虽然传统以太网络有众多优点,但是它并不能进行实时数据的传输,不符合车载网络的要求。时间触发以太网络TTEth-ernet(TimeTriggeredEthernet)[35,36]是一种基于时间触发的实时以太网络,它结合了决策、容错和实时性,时间触发信息可以在预定的时间内传输,该网络适用于刹车线控和转向线控等方面。而以太网络音视频桥(EthernetAudio/VideoBridging,EthernetAVB)技术则是更具发展潜力的网络音视频实时传输技术,相比于TTEthernt技术更适合用于车载多媒体系统,因为它可以提供精准时间同步、媒体流量整形、接收控制以及非实时设备鉴定,在保障实时数据流传输的同时,兼容传统以太网数据的传输。并且它是一项新的IEEE802.1标准,在传统以太网络的基础上,为实时音视频流数据传输提供高可靠、低延迟和低成本的实现方案,弥补了传统以太网络传输实时数据的缺陷。EthernetAVB协议栈主要包括5个协议,分别为精准时间同步协议PTP(PrecisionTimeProtocol),流预留协议SRP(StreamReservationProtocol),队列及转发协议QFP(QueuingandFor-wardingProtocol),音视频桥接传输协议AVBTP(Audio/VideoBridgingTransportProtocol)和实时传输协议RTP(Real-timeTransportProtocol)。EthernetAVB协议栈PTP:它以IEEEP1588V2为原型,将原来的IP路由协议应用到只有两层结构的局域以太网络中。主要包括两个方面,一个方面是主时钟的选择,另一方面是同步机制,即时间补偿和时钟频率匹配。PTP通过最佳主时钟算法来选择PTP域的一个主时钟,并以它为根建立一个用于同步的生成树,每一个时间敏感的设备节点都要与主时钟同步。在本地网络中,同时定义一些潜在主时钟,当访问主时钟失败时,自动切换到其中一个潜在主时钟并建立相应的生成树,以保证网络时钟同步。主时钟确定后,通过时间戳机制来发送同步信息[37],并通过传统以太网络数据包传递时间戳,当含有时间戳的消息进出需要时钟同步的端口时,会与本地时钟进行对比,利用相应的路径延迟补偿算法对本地时钟进行匹配。匹配后的从节点再发送含有时间戳的信息,与下一个从节点进行时间同步匹配。SRP:为了保证数据传输和转发的服务质量,降低时延和抖动,SRP根据网络拓扑的带宽情况,预先锁定传输路径,并且预留一部分带宽,确保音视频流设备间端到端的带宽可用性。SRP使用信号协议SP(SignalingProtocol)和功能扩展的IEEE802.1多注册协议MRP(MultipleRegistrationProtocol)交换音视频流的带宽描述消息,并对带宽资源进行预留。
一般情况下,把整个带宽的75%预留给时间敏感的音视频流数据,剩下的25%用来传输传统的以太网络数据。SRP包含注册和预留两部分,流预留服务中,把流服务的提供者定义为Talker,接受者定义为Listener。Talker对音视频流所需带宽资源进行协商预留,Listener则注册并接收所需的音视频流。Talker初始时广播一个提供声明,表示自己能够提供流数据并说明其属性,使接受者知道Talker的存在以及数据已经准备好发送了。消息传播的过程中,会沿途收集信道的服务质量信息,而收集到的信息分为两种。当信道已经准备好了,则反馈一个正的提供声明注册消息,表示通信路径已经准备好了,可以发送数据;当反馈一个负的提供声明注册消息时,则不可以发送。Listener也可以发送请求声明,广播想要接收的信息,消息传播的过程中,沿途运载资源分配结果信息,该信息也分为正负两种情况,正的请求声明表示能够接收到信息,负的请求声明表示信道没有准备好。同样,Talker和Listener也可以根据自身情况使用MRP信号机制,撤销提供或者请求信息来结束信道锁定和预留。SRP内部周期性的状态机维护着Talker及Listener的注册信息,能够动态地对网络节点状态进行监测并更新其内部注册信息数据库,以适应网络拓扑的动态改变。QFP:它是AVB协议栈中的伴随协议,大部分实现在交换机中,负责数据传输的处理和转发机制,确保传统的以太网络数据流量不会干扰到实时音视频流。QFP主要包括三个部分,流量整形、优先级划分和队列管理。为了避免时间敏感的音视频流数据和普通数据对带宽的竞争,EthernetAVB交换机拥有若干个输入输出队列,音视频流数据和普通数据分别进入不同的队列,所有的交换机和网桥都使用优先级传输选择算法,并且赋予音视频流数据最高的优先级。交换机进行队列转发时,音视频流数据总是优先于传统以太网数据进行转发。还有一种基于可信因子的整形算法,用来处理不同的音视频实时数据(A类音视频流和B类音视频流)的转发,只有当可信因子大于或等于0并且信道中没有冲突的报文时才可以进行传输。当该报文进行传输时,可信因子会以一个发送斜率减少,同样,当一个实时报文在队列中等待时,可信因子会以一个闲置斜率增加,这样只要信道一空闲它就会被传输。另外,AVBTP主要负责对EthernetAVB实时流数据进行打包,同时负责流的建立、控制以及结束。而RTP在基于IP的三层应用上利用EthernetAVB的性能,通过桥接及路由在局域网内提供时间同步、延迟保障和带宽预留的服务,以保障实时音视频流的传输。
3.2单对非屏蔽双绞线
2005年AVnu联盟成立,使得EthernetAVB得到市场效益的推动,这主要集中在车载网络和消费电子领域。但是传统以太网络的物理层并不能达到车载网络对通信介质的要求,因此2011年OPEN联盟成立,该联盟专门为车载以太网络提供物理层介质,其倡导采用全双工的单对非屏蔽双绞线进行通信。为单对非屏蔽双绞线和传统屏蔽线缆,相比之下单对非屏蔽双绞线做出了两个方面的改进:一方面是减少了线束,使成本比传统电缆降低80%,重量轻30%,从而有效提高汽车燃油效率[39];而另一方面则是频率从200MHz降低到了50MHz,使其无需屏蔽就具有抗电磁干扰的能力。另外,单对非屏蔽双绞线还可以实现电力传输,在文献[40]中作者应用博通系列芯片验证了双绞线实现电力传输的情况。虽然在理论上单对非屏蔽双绞线通信技术满足了车载网络对于布线的苛刻要求,但目前并没有关于它应用到具体车型的测试或者验收报告,车载以太网络的进一步发展仍然需要许多技术的不断完善。
4三种车载多媒体网络对比
这三种车载多媒体网络各有其突出优点:MOST网络技术可以传输多种数据类型,物理层可以使用不同的传输介质,拥有成熟的技术规范和大量的支持厂商;IDB-1394网络技术数据传输速率最高,在芯片内部提供数字传输内容保护技术,并且相对其他两种技术而言所需芯片更少;车载以太网络技术来源于传统以太网络,具有更广泛的应用空间,并且其拓扑结构最为灵活。
5结语
本文对现有的主流车载多媒体网络技术进行了综述。首先在发展历史、基本特点、研究现状和未来趋势等四方面对MOST网路技术进行了论述。然后简单介绍了IDB-1394网络技术的特点和现状,接着从实时以太网络协议和单对非屏蔽双绞线两方面论述了车载以太网络技术发展的前提和基础。最后对三种网络技术进行了比较。车载多媒体网络技术正在向着更高带宽、更小延迟和更加灵活的方向发展,而三种车载多媒体网络技术的竞争还将继续下去。可以预见,车载多媒体网络技术的发展将极大地推动自动驾驶和车载信息系统等领域技术的发展,从而人们可以享受到更加舒适便捷的车载服务。