数学建模毕业论文(实用3篇)
数学建模毕业论文 篇一:探索基于图论的社交网络分析模型
社交网络已经成为了现代社会中不可或缺的一部分,人们在日常生活中通过社交网络平台与他人进行交流、分享信息和建立关系。在这个数字化时代,社交网络数据的分析和挖掘变得越来越重要。本文将探索基于图论的社交网络分析模型,旨在揭示社交网络中的潜在关系和影响力。
首先,我们将介绍图论的基本概念和方法。图论是一门研究图以及图中节点和边之间关系的数学学科。在社交网络中,节点代表个体或实体,边代表它们之间的关系。通过构建图模型,我们可以利用图论的方法来分析社交网络中的节点和边的属性,进而揭示社交网络的结构和特征。
其次,我们将探讨社交网络中的关键问题,如社区发现、信息传播和影响力传播。社区发现是指在社交网络中寻找具有紧密联系的节点群体。我们可以利用图论中的聚类算法和模块度优化方法来进行社区发现,从而了解社交网络中的群体结构和群体行为。
信息传播是社交网络中的另一个重要问题。在社交网络中,信息可以通过节点之间的连接传播。我们可以利用图论中的传播模型和信息传播算法来模拟和预测信息在社交网络中的传播路径和速度。这对于社交网络平台和营销策略的优化具有重要意义。
最后,我们将讨论影响力传播的研究。在社交网络中,一些节点具有较大的影响力,他们可以通过自身的行为影响其他节点的行为。我们可以利用图论中的影响力传播模型和节点中心性指标来度量和预测节点的影响力。这对于社交网络中的重要人物识别和社交网络的管理具有重要意义。
通过本文的研究,我们希望能够为社交网络分析提供一个基于图论的模型和方法,揭示社交网络中的潜在关系和影响力。这将有助于社交网络平台和营销策略的优化,以及社交网络中的重要人物识别和社交网络的管理。
数学建模毕业论文 篇二:基于优化方法的交通流量预测模型研究
随着城市化进程的加快和汽车保有量的增加,交通拥堵问题日益凸显,交通流量预测成为了一个重要的研究方向。本文将探讨基于优化方法的交通流量预测模型,旨在提高交通系统的效率和可持续性。
首先,我们将介绍交通流量预测的背景和意义。交通流量预测是指利用历史交通数据和其他相关数据,通过建立数学模型来预测未来交通流量的变化趋势。准确的交通流量预测有助于优化交通系统的调度和规划,减少交通拥堵和排放量,提高交通系统的效率和可持续性。
其次,我们将探讨基于优化方法的交通流量预测模型。优化方法是一种通过寻找最优解来解决问题的数学方法。在交通流量预测中,我们可以利用优化方法来建立交通流量预测模型,以最小化预测误差或最大化预测准确率。我们可以使用线性规划、整数规划、遗传算法等优化方法来求解交通流量预测模型中的参数和约束条件。
最后,我们将讨论交通流量预测模型的应用和挑战。交通流量预测模型可以应用于交通调度、交通规划、交通控制等领域。然而,由于交通系统的复杂性和不确定性,交通流量预测模型面临着一些挑战,如数据获取和处理、模型选择和参数调整等。我们将探讨这些挑战,并提出相应的解决方案。
通过本文的研究,我们希望能够提出一种基于优化方法的交通流量预测模型,提高交通系统的效率和可持续性。这将有助于优化交通调度和规划,减少交通拥堵和排放量,提高城市交通的质量和可持续发展水平。
数学建模毕业论文 篇三
数学建模毕业论文
然数学建模思想遍布国内外,但是真正将数学建模融入教学,从生活事件中抽取数学素材却很难。现在是小编为您整理的数学建模毕业论文,希望对您有所帮助。
摘要:数学建模即为解决现实生活中的实际问题而建立的数学模型,它是数学与现实世界的纽带。结合教学案例,利用认知心理学知识,提出促进学生建立良好数学认知结构以及数学学习观的原则和方法,帮助学生由知识型向能力型转变,推进素质教育发展。
关键词:认知心理学;思想;数学建模;认知结构;学习观
认知心理学(CognitivePsychology)兴起于20世纪60年代,是以信息加工理论为核心,研究人的心智活动为机制的心理学,又被称为信息加工心理学。它是认知科学和心理学的一个重要分支,它对一切认知或认知过程进行研究,包括感知觉、注意、记忆、思维和言语等[1]。当代认知心理学主要用来探究新知识的识记、保持、再认或再现的信息加工过程中关于学习的认识观。而这一认识观在学习中体现较突出的即为数学建模,它是通过信息加工理论对现实问题运用数学思想加以简化和假设而得到的数学结构。本文通过构建数学模型将“认知心理学”的思想融入现实问题的处理,结合教学案例,并提出建立良好数学认知结构以及数学学习观的原则和方法,进一步证实认知心理学思想在数学建模中的重要性。
一、案例分析
2011年微软公司在招聘毕业大学生时,给面试人员出了这样一道题:假如有800个形状、大小相同的球,其中有一个球比其他球重,给你一个天平,请问你可以至少用几次就可以保证找出这个较重的球?面试者中不乏名牌大学的本科、硕士甚至博士,可竟无一人能在有限的时间内回答上来。其实,后来他们知道这只是一道小学六年级“找次品”题目的变形。
(一)问题转化,认知策略
我们知道,要从
800个球中找到较重的一个球这一问题如果直接运用推理思想应该会很困难,如果我们运用“使复杂问题简单化”这一认知策略,问题就会变得具体可行。于是,提出如下分解问题。问题1.对3个球进行实验操作[2]。问题2.对5个球进行实验操作。问题3.对9个球进行实验操作。问题4.对4、6、7、8个球进行实验操作。问题5.如何得到最佳分配方法。(二)模型分析,优化策略
通过问题1和问题2,我们知道从3个球和5个球中找次品,最少并且保证找到次品的分配方法是将球分成3份。但这一结论只是我们对实验操作的感知策略。为了寻找策略,我们设计了问题3,对于9个球的最佳分配方法也是分为3份。因此我们得到结论:在“找次品”过程中,结合天平每次只能比较2份这一特点,重球只可能在天平一端或者第3份中,同时,为了保证最少找到,9个球均分3份是最好的方法。能被3除尽的球我们得到均分这一优化策略,对于不能均分的球怎么分配?于是我们设计了问题4,通过问题4我们得到结论:找次品时,尽量均分为3份,若不能均分要求每份尽量一样,可以多1个或少1个。通过问题解决,我们建立新的认知结构:2~3个球,1次;3+1~32个球,2次;32+1~33个球,3次;……
(三)模型转化,归纳策略
通过将新的认知结构运用到生活实践,我们知道800在36~37之间,所以我们得到800个球若要保证最少分配次数是7次。在认知心理学中,信息的具体表征和加工过程即为编码。编码并不被人们所觉察,它往往以“刺激”的形式表现为知觉以及思想。在信息加工过程中,固有的知识经验、严密的逻辑思维能力以及抽象概况能力将为数学建模中能力的提高产生重要的意义。
二、数学建模中认知心理学思想融入
知识结构和认知结构是认知心理学的两个基本概念[3]。数学是人类在认识社会实践中积累的经验成果,它起源于现实生活,以数字化的形式呈现并用来解决现实问题。它要求人们具有严密的逻辑思维以及空间思维能力,并通过感知、记忆、理解数形关系的过程中形成一种认知模型或者思维模式。这种认知模型通常以“图式”的形式存在于客体的头脑,并且可以根据需要随时提取支配。
(一)我国数学建模的现状
《课程标准(2011年版)》将模型思想这一核心概念的引入成为数学学习的主要方向。其实,数学建模方面的文章最早出自1982年张景中教授论文“洗衣服的数学”以及“垒砖问题”。虽然数学建模思想遍布国内外,但是真正将数学建模融入教学,从生活事件中抽取数学素材却很难。数学建模思想注重知识应用,通过提取已有“图式”→加工信息→形成新的认知结构的方式内化形成客体自身的“事物结构”,其不仅具有解释、判断、预见功能,而且能够提高学生学习数学的兴趣和应用意识[4]。
(二)结合认知心理学思想,如何形成有效的数学认知结构
知识结构与智力活动相结合,形成有效认知结构。我们知道,数学的知识结构是前人在总结的基础上,通过教学大纲、教材的形式呈现,并通过语言、数字、符号等形式详细记述的。学生在学习时,通过将教材中的知识简约化为特定的语言文字符号的过程叫作客体的认知结构,这一过程中,智力活动起了重要作用。复杂的知识结构体系、内心体验以及有限的信息加工容量让我们不得不针对内外部的有效信息进行筛选。这一过程中,“注意”起到重要作用,我们在进行信息加工时,只有将知识结构与智力活动相结合,增加“有意注意”和“有意后注意”,才能够形成有效的数学认知结构。根据不同构造方式,形成有利认知结构。数学的知识结构遵循循序渐进规律,并具有严密的逻辑性和准确性,它是形成不同认知结构的基础。学生头脑中的认知结构则是通过积累和加工而来,即使数学的知识结构一样,不同的人仍然会形成不同的认知结构。这一特点取决于客体的智力水平、学习能力。因此若要形成有利认知结构,必须遵循知识发展一般规律,注重知识的连贯性和顺序性,考虑知识的积累,注重逻辑思维能力的提高。
三、认知心理学思想下的数学学习观
学习是学习者已知的、所碰到的信息和他们在学习时所做的之间相互作用的结果[5]。如何将数学知识变为个体的知识,从认知心理学角度分析,即如何将数学的认知结构吸收为个体的认知结构,即建立良好的数学学习观,这一课题成为许多研究者关注的对象。那么怎样学习才能够提高解决数学问题的能力?或者怎样才能构建有效的数学模型,接下来我们将根据认知心理学知识,提出数学学习观的构建原则和方法。
(一)良好数学学习观应该是“双向产生式”的信息
加工过程学习是新旧知识相互作用的'结果,是人们在信息加工过程中,通过提取已有“图式”将新输入的信息与头脑中已存储的信息进行有效联系而形成新的认知结构的过程[6]。可是,当客体对于已有“图式”不知如何使用,或者当遇到可以利用“图式”去解决的问题时不知道去提取相应的知识,学习过程便变得僵化、不知变通。譬如,案例中,即使大部分学生都学习了“找次品”这部分内容,却只能用来解决比较明确的教材性问题,对于实际生活问题却很难解决。学习应该是“双向产生式”的信息加工过程,数学的灵活性在这方面得到了较好的体现。学习时应遵循有效记忆策略,将所学知识与该知识有联系的其他知识结合记忆,形成“流动”的知识结构。例如在案例中,求800个球中较重球的最少次数,可以先从简单问题出发,对3个球和5个球进行分析,猜测并验证出一般分配方法。这一过程需要有效提取已有知识经验,通过拟合构造,不仅可以提高学生学习兴趣,而且能够增强知识认识水平和思维能力。
(二)良好数学学习观应该具有层次化、条理化的认知结构
如果头脑中仅有“双向产生式”的认知结构,当遇到问题时,很难快速找到解决问题的有效条件。头脑中数以万计“知识组块”必须形成一个系统,一个可以大大提高检索、提取效率的层次结构网络。如案例,在寻找最佳分配方案时,我们可以把8个球中找次品的所有分配情况都罗列出来。这样做,打破了“定势”的限制,而以最少称量次数为线索来重新构造知识,有助于提高学生发散思维水平,使知识结构更加具有层次化、条理化。在学习过程中,随着头脑中信息量的增多,层次结构网络也会越来越复杂。因此,必须加强记忆的有效保持,巩固抽象知识与具体知识之间的联系,能够使思维在抽象和现实之间灵活转化。而这一过程的优化策略是有效练习。
(三)良好数学学习观应该具有有效的思维策略
要想形成有效的数学学习观,提高解决实际问题的能力,头脑中还必须要形成有层次的思维策略,以便大脑在学习和信息加工过程中,策略性思维能够有效加以引导和把控。通过调节高层策略知识与底层描述性及程序性知识之间的转换,不断反思头脑思维策略是否恰当进而做出调整和优化。譬如,在案例中,思维经过转化策略、寻找策略、优化策略、归纳总结四个过程,由一般→特殊→一般问题的求解也是思维由高层向底层再向高层转换的层次性的体现。
在思维策略训练时,我们应重视与学科知识之间的联系度。底层思维策略主要以学科知识的形式存在于头脑,它的迁移性较强,能够与各种同学科问题紧密结合。因此可以通过训练学生如何审题,如何利用已有条件和问题明确思维方向,提取并调用相关知识来解决现实问题。
另外,有效思维训练还必须做到“熟练”,对于课堂需要识记的东西要提前预习并及时复习,对于同类型题目,找出知识之间的关联性组建知识层次结构,有效练习同类型题目,提高解难题能力,做到“熟能生巧”。
总之,认知心理学思想融入数学建模是非常有必要和有意义的。数学建模的最终目标是培养学生用数学的眼光观察问题,用数学的思维思考问题,用数学的方法解决问题的能力[4]。数学建模的过程即为已有信息经过智力加工→编码而形成心理产物,这一过程需要运用到数学知识系统和思维操作系统。因此,要想提高学生数学建模能力、搭建理论与实践的桥梁、促进学生由知识型向能力型转变、推进素质教育发展,除了教师的引导、学校的重视外,学生自身在认知结构、信息构建、思维策略、训练方式等方面也应提出新的思考。
参考文献:
[1]刘勋,吴艳红,李兴珊,蒋毅.认知心理学:理解脑、心智和行为的基石[J].学科发展,2011,26(6):620-621.
[2]陈晓虎.浅谈在找次品教学中优化数学思想方法的渗透[J].教研争鸣,2014,12(1):151.
[3]管鹏.形成良好数学认知结构的认知心理学原则[J].教育理论与实践,1998,18(2):40-45.
[4]罗苗.认知心理学在教学中的应用———C语言程序设计为例[J].科技教育创新,2010,121(19):250.
[5]周燕.小学数学教学中数学模型思想的融入[D].上海:上海师范大学,2013.
[6]傅小兰,刘超.认知心理学研究心智问题的途径和方法[J].自然辩证法通讯,2003,147(5):96-97.