初中图形与几何知识整理【实用3篇】

初中图形与几何知识整理 篇一

初中学习阶段,图形与几何知识是数学学科中的重要内容之一。通过学习图形与几何,学生可以培养空间想象力和几何直观思维能力,提高解决实际问题的能力。下面将对初中图形与几何知识进行整理。

一、基本概念

1. 点、线、面:点是没有大小和形状的,线由无数个点组成,面是由无数个线组成的。

2. 直线、射线、线段:直线是无限延伸的,射线由一点和延伸的一条直线组成,线段由两点和它们之间的直线组成。

3. 角:由两条射线的公共起点和它们之间的部分组成。

4. 三角形:由三条线段组成,每两条线段的交点称为顶点,每条线段称为边。

5. 四边形:由四条线段组成,每两条线段的交点称为顶点,每条线段称为边。

6. 圆:由一个固定点到平面上所有离它相等距离的点的轨迹组成。

二、关系与性质

1. 平行线与垂直线:平行线是在同一个平面内永不相交的两条直线,垂直线是与另一条直线相交时,相交角为90度的直线。

2. 同位角、内错角与同旁内角:同位角是两条平行线被一条直线交叉所形成的内角,内错角是两条平行线被一条直线交叉所形成的互补角,同旁内角是两条平行线被一条直线交叉所形成的同旁内角。

3. 相似与全等:相似是指两个图形的形状相似,但大小可能不同;全等是指两个图形的形状和大小完全相同。

4. 圆的性质:圆的半径是由圆心到圆上任意一点的距离,直径是由圆心通过圆上任意两点的线段的长度,圆周长是圆的边界长度,圆的面积是圆内部的平面区域。

三、计算方法

1. 三角形的面积计算:可以使用海伦公式(p=1/2(a+b+c))或高度法(S=1/2bh)计算三角形的面积。

2. 四边形的面积计算:可以将四边形分解为两个三角形或一个矩形和两个三角形,然后计算其面积。

3. 圆的周长和面积计算:圆的周长可以使用公式C=2πr计算,圆的面积可以使用公式S=πr2计算。

通过对初中图形与几何知识的整理,我们可以更好地理解和应用这些知识。在解决实际问题时,我们可以利用这些知识进行分析和计算,从而得到准确的结果。同时,通过练习和实践,我们还可以提高空间想象力和几何直观思维能力,为将来学习更高级的数学知识打下坚实的基础。

初中图形与几何知识整理 篇二

初中图形与几何知识整理 篇二

在初中学习阶段,图形与几何知识是数学学科中的重要内容之一。通过学习图形与几何,学生可以培养空间想象力和几何直观思维能力,提高解决实际问题的能力。下面将对初中图形与几何知识的一些应用进行整理。

一、平面图形的应用

1. 建筑设计:建筑设计中需要运用几何知识进行空间布局和构造设计,如平面图的绘制、空间尺寸的计算等。

2. 花纹设计:在绘画和装饰中,我们可以运用几何图形进行花纹的设计,如方格、菱形、波浪等。

3. 地图阅读:地图是平面图形的一种应用,通过阅读地图,我们可以了解地理位置、地形、道路等信息。

二、几何知识在实际问题中的应用

1. 测量问题:在日常生活中,我们常常需要进行长度、面积、体积等的测量,这时候就需要运用几何知识进行计算。

2. 工程问题:在工程建设中,需要进行土地规划、路线设计等,这时候就需要运用几何知识进行空间布局和设计。

3. 三视图问题:在制图和设计中,我们需要绘制物体的三视图,通过几何知识可以准确地绘制出物体的形状和尺寸。

三、解决实际问题的思维方法

1. 分析问题:在解决实际问题时,首先要对问题进行分析,了解问题的背景和要求,明确问题的关键点。

2. 抽象问题:将实际问题转化为几何图形,通过抽象将问题简化,便于进行计算和推理。

3. 运用几何知识:根据问题的要求和几何知识的应用,选择合适的公式和方法进行计算和分析。

4. 检验结果:在解决问题后,要对结果进行检验,确保计算和分析的正确性。

通过运用几何知识解决实际问题,我们可以提高解决问题的能力和准确性。同时,通过实践和练习,我们还可以提高空间想象力和几何直观思维能力,为将来学习更高级的数学知识打下坚实的基础。初中图形与几何知识的应用远不止于此,希望同学们能够在学习中发现更多的应用场景,并将其运用到实际生活中。

初中图形与几何知识整理 篇三

初中图形与几何知识整理

  你们是不是在找关于初中图形与几何知识呢?下面小编整理了一些初中图形与几何知识,供大家参考,希望对你们有帮助。

  初中图形与几何知识

  (1)角

  角平分线的性质:角平分线上的点到角的两边距离相等,角的内部到两边距离相等的点在角平分线上。

  (2)相交线与平行线

  同角或等角的补角相等,同角或等角的余角相等;

  对顶角的性质:对顶角相等

  垂线的性质

  ①过一点有且只有一条直线与已知直线垂直;

  ②直线外一点有与直线上各点连结的所有线段中,垂线段最短;

  线段垂直平分线定义:过线段的中点并且垂直于线段的直线叫做线段的垂直平分线;

  线段垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离相等,到线段两端点的距离相等的点在线段的垂直平分线;

  平行线的定义:在同一平面内不相交的两条直线叫做平行线;

  平行线的判定:

  ①同位角相等,两直线平行;

  ②内错角相等,两直线平行;

  ③同旁内角互补,两直线平行;

  平行线的特征:

  ①两直线平行,同位角相等;

  ②两直线平行,内错角相等;

  ③两直线平行,同旁内角互补;

  平行公理:经过直线外一点有且只有一条直线平行于已知直线。

  (3)三角形

  三角形的三边关系定理及推论:三角形的两边之和大于第三边,两边之差小于第三边;

  三角形的内角和定理:三角形的三个内角的和等于;

  三角形的外角和定理:三角形的一个外角等于和它不相邻的两个的和;

  三角形的外角和定理推理:三角形的一个外角大于任何一个和它不相邻的内角;

  三角形的三条角平分线交于一点(内心);

  三角形的三边的垂直平分线交于一点(外心);

  三角形中位线定理:三角形两边中点的连线平行于第三边,并且等于第三边的一半;

  全等三角形的判定:

  ①边角边公理(SAS)

  ②角边角公理(ASA)

  ③角角边定理(AAS)

  ④边边边公理(SSS)

  ⑤斜边、直角边公理(HL)

  等腰三角形的性质:

  ①等腰三角形的两个底角相等;

  ②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一)

  等腰三角形的判定:

  有两个角相等的三角形是等腰三角形;

  直角三角形的性质:

  ①直角三角形的两个锐角互为余角;

  ②直角三角形斜边上的中线等于斜边的一半;

  ③直角三角形的两直角边的平方和等于斜边的平方(勾股定理);

  ④直角三角形中角所对的直角边等于斜边的一半;

  直角三角形的判定:

  ①有两个角互余的三角形是直角三角形;

  ②如果三角形的三边长a、b 、c有下面关系,那么这个三角形是直角三角形(勾股定理的逆定理)。

  三角形知识点、概念总结

  1. 三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

  2. 三角形的分类

  3. 三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

  4. 高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

  5. 中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

  6. 角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

  7. 高线、中线、角平分线的意义和做法

  8. 三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

  9. 三角形内角和定理:三角形三个内角的和等于180°

  推论1 直角三角形的两个锐角互余

  推论2 三角形的一个外角等于和它不相邻的两个内角和

  推论3 三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半

  10. 三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

  11. 三角形外角的性质

  (1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;

  (2)三角形的一个外角等于与它不相邻的两个内角和;

  (3)三角形的一个外角大于与它不相邻的任一内角;

  (4)三角形的外角和是360°。

  四边形(含多边形)知识点、概念总结

  一、平行四边形的定义、性质及判定

  1. 两组对边平行的四边形是平行四边形。

  2. 性质:

  (1)平行四边形的对边相等且平行

  (2)平行四边形的对角相等,邻角互补

  (3)平行四边形的对角线互相平分

  3. 判定:

  (1)两组对边分别平行的四边形是平行四边形

  (2)两组对边分别相等的四边形是平行四边形

  (3)一组对边平行且相等的四边形是平行四边形

  (4)两组对角分别相等的四边形是平行四边形

  (5)对角线互相平分的四边形是平行四边形

  4. 对称性:平行四边形是中心对称图形

  二、矩形的定义、性质及判定

  1. 定义:有一个角是直角的平行四边形叫做矩形

  2. 性质:矩形的四个角都是直角,矩形的对角线相等

  3. 判定:

  (1)有一个角是直角的平行四边形叫做矩形

  (2)有三个角是直角的四边形是矩形

  (3)两条对角线相等的平行四边形是矩形

  4. 对称性:矩形是轴对称图形也是中心对称图形。

  三、菱形的定义、性质及判定

  1. 定义:有一组邻边相等的平行四边形叫做菱形

  (1)菱形的四条边都相等

  (2)菱形的对角线互相垂直,并且每一条对角线平分一组对角

  (3)菱形被两条对角线分成四个全等的直角三角形

  (4)菱形的面积等于两条对角线长的积的一半

  2. s菱=争6(n、6分别为对角线长)

  3. 判定:

  (1)有一组邻边相等的平行四边形叫做菱形

  (2)四条边都相等的四边形是菱形

  (3)对角线互相垂直的平行四边形是菱形

  4. 对称性:菱形是轴对称图形也是中心对称图形

  四、正方形定义、性质及判定

  1. 定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形

  2. 性质:

  (1)正方形四个角都是直角,四条边都相等

  (2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

  (3)正方形的一条对角线把正方形分成两个全等的等腰直角三角形

  (4)正方形的对角线与边的夹角是45°

  (5)正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形

  3. 判定:

  (1)先判定一个四边形是矩形,再判定出有一组邻边相等

  (2)先判定一个四边形是菱形,再判定出有一个角是直角

  4. 对称性:正方形是轴对称图形也是中心对称图形

  五、梯形的定义、等腰梯形的性质及判定

  1. 定义:一组对边平行,另一组对边不平行的四边形是梯形.两腰相等的梯形是等腰梯

  形.一腰垂直于底的梯形是直角梯形

  2. 等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等

  3. 等腰梯形的判定:两腰相等的梯形是等腰梯形;同一底上的两个角相等的梯形是等腰梯形;两条对角线相等的梯形是等腰梯形

  4. 对称性:等腰梯形是轴对称图形

  六、三角形的中位线平行于三角形的第三边并等于第三边的一半;梯形的中位线平行于梯形的两底并等于两底和的一半。

  七、线段的重心是线段的中点;平行四边形的重心是两对角线的交点;三角形的重心是三条中线的交点。

  八、依次连接任意一个四边形各边中点所得的四边形叫中点四边形。

  九、多边形

  1. 多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

  2. 多边形的内角:多边形相邻两边组成的角叫做它的内角。

  3. 多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

  4. 多边形的.对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

  5. 多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。

  6. 正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。

  7. 平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

  8. 公式与性质

  多边形内角和公式:n边形的内角和等于(n-2)·180°

  9. 多边形外角和定理:

  (1)n边形外角和等于n·180°-(n-2)·180°=360°

  (2)边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°

  10. 多边形对角线的条数:

  (1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形

  (2)n边形共有n(n-3)/2条对角线

  圆知识点、概念总结

  1. 不在同一直线上的三点确定一个圆。

  2. 垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧

  推论1 ① (不是直径)的直径垂直于弦,并且平分弦所对的两条弧

  ② 弦的垂直平分线经过圆心,并且平分弦所对的两条弧

  ③ 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

  推论2 圆的两条平行弦所夹的弧相等

  3. 圆是以圆心为对称中心的中心对称图形

  4. 圆是定点的距离等于定长的点的集合

  5. 圆的内部可以看作是圆心的距离小于半径的点的集合

  6. 圆的外部可以看作是圆心的距离大于半径的点的集合

  7. 同圆或等圆的半径相等

  8. 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

  9. 定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等

  10. 推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

  11. 定理:圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角

  12. ① 直线L和⊙O相交 d

  ② 直线L和⊙O相切 d=r

  ③ 直线L和⊙O相离 d>r

  13. 切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线

  14. 切线的性质定理:圆的切线垂直于经过切点的半径

  15. 推论1 经过圆心且垂直于切线的直线必经过切点

  16. 推论2 经过切点且垂直于切线的直线必经过圆心

  17. 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角

  18. 圆的外切四边形的两组对边的和相等 ,外角等于内对角

  19. 如果两个圆相切,那么切点一定在连心线上

  20. ① 两圆外离 d>R+r

  ② 两圆外切 d=R+r

  ③ 两圆相交 R-rr)

  ④ 两圆内切 d=R-r(R>r) ⑤两圆内含dr)

  21. 定理:相交两圆的连心线垂直平分两圆的公共弦

  22. 定理:把圆分成n(n≥3):

  (1)依次连结各分点所得的多边形是这个圆的内接正n边形

  (2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

  23. 定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

  24. 正n边形的每个内角都等于(n-2)×180°/n

  25. 定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

  26. 正n边形的面积Sn=pnrn/2 p表示正n边形的周长

  27. 正三角形面积√3a/4 a表示边长

  28. 如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

  29. 弧长计算公式:L=n兀R/180

  30. 扇形面积公式:S扇形=n兀R^2/360=LR/2

  31. 内公切线长= d-(R-r) 外公切线长= d-(R+r)

  32. 定理:一条弧所对的圆周角等于它所对的圆心角的一半

  33. 推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

  34. 推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

  35. 弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r

相关文章

陪伴初中作文800字(优质6篇)

在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。相信许多人会觉得范文很难写?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。陪伴初中作文800字篇一从小...
初中资料2011-01-03
陪伴初中作文800字(优质6篇)

初中语文的学习方法总结【经典3篇】

重在熏陶渐染,贵在日积月累,所谓,好象很难用语言说清楚;但仔细一想,情况并非如此——作为一门独立的学科,其自成体系,要系统规范的掌握,必然要用一定的。有人说,没有太好的办法,只要多读多写就可以了;一位...
初中资料2019-02-04
初中语文的学习方法总结【经典3篇】

初中中华魂的征文【经典3篇】

在日常学习、工作和生活中,大家都不可避免地会接触到征文吧,征文具有主题鲜明、内容清楚的特点。怎么写征文才能避免踩雷呢?下面是小编为大家收集的初中关于中华魂的征文1500字,欢迎阅读,希望大家能够喜欢。...
初中资料2011-03-08
初中中华魂的征文【经典3篇】

初一数学学习方法(优选6篇)

在平平淡淡的学习、工作、生活中,学习对大家来说都非常重要,同时,越来越多的人开始注重正确的学习方法。想要找到正确的学习方法?以下是小编为大家收集的初一数学学习方法,欢迎阅读,希望大家能够喜欢。初一数学...
初中资料2019-08-07
初一数学学习方法(优选6篇)

初一英语学习方法【经典3篇】

英语是我们升学的必考科目,初一是我们系统学习英语的开始。下面是小编分享的初一英语学习技巧与方法,希望能对大家有所帮助! 掌握英语基础知识 语音、词汇和语法是英语学习的基...
初中资料2012-08-03
初一英语学习方法【经典3篇】

初一的运动会感想(最新3篇)

篇一 在这秋高气爽的九月里,我们迎着秋日的阳光,伴随着收获的季节,迎来了欢快精彩的校运动会. 一大早,全校师生就来到了运动场,他们有的安排场地,有的整理服装,有的安放运动器材,忙得不亦乐乎,原本寂静的...
初中资料2017-01-01
初一的运动会感想(最新3篇)