线性代数知识点总结(精选5篇)
线性代数知识点总结 篇一
线性代数是数学中的一个重要分支,它研究的是向量空间及其线性变换的性质和结构。在实际应用中,线性代数被广泛应用于物理学、计算机科学、经济学等领域。本文将总结线性代数的一些重要知识点,帮助读者更好地理解和应用线性代数。
1. 向量
向量是线性代数的基础概念,它表示空间中的一个点或方向。向量可以用坐标表示,也可以用矩阵表示。向量的加法和数乘运算是线性代数中最基本的运算。
2. 矩阵
矩阵是线性代数中另一个重要的概念,它由多个行和列组成的二维数组。矩阵可以表示线性变换或者方程组。矩阵的乘法是线性代数中的重要运算,它可以将两个矩阵相乘得到一个新的矩阵。
3. 行列式
行列式是一个标量值,它可以用来判断一个矩阵是否可逆。行列式的计算可以通过对矩阵进行一系列的变换来简化,例如行列式的性质和行列式的展开定理。
4. 线性方程组
线性方程组是线性代数中的一个重要概念,它由一系列线性方程组成。求解线性方程组的方法有很多,例如高斯消元法、矩阵的逆、克莱姆法则等。
5. 特征值和特征向量
特征值和特征向量是线性代数中的重要概念,它们描述了线性变换的性质。特征值可以用来判断线性变换是否有稳定的状态,特征向量则表示了线性变换的方向。
6. 线性空间
线性空间是线性代数中的一个重要概念,它由一组向量组成。线性空间具有加法和数乘运算,并满足一系列的公理,例如封闭性、结合律、分配律等。
7. 正交性
正交性是线性代数中的一个重要概念,它描述了向量之间的垂直关系。正交向量可以用来表示空间中的基向量,从而简化向量的表示和计算。
以上仅是线性代数中的一些重要知识点的简要总结,线性代数还有很多深入的内容和应用,例如线性变换、最小二乘法、奇异值分解等。希望读者通过本文的学习,能够对线性代数有一个初步的了解,并能够在实际应用中灵活运用线性代数的知识。
线性代数知识点总结 篇二
线性代数是数学中的一个重要分支,它研究的是向量空间及其线性变换的性质和结构。在实际应用中,线性代数被广泛应用于物理学、计算机科学、经济学等领域。本文将进一步总结线性代数的一些重要知识点,帮助读者更深入地理解和应用线性代数。
1. 线性相关与线性无关
线性相关与线性无关是线性代数中的一个重要概念,它描述了向量之间的关系。如果存在一组非零向量的线性组合等于零向量,那么这组向量就是线性相关的;否则,它们就是线性无关的。线性相关与线性无关的概念在研究向量空间的维数和基向量时起到了重要作用。
2. 矩阵的特征值分解
矩阵的特征值分解是线性代数中的一个重要概念,它可以将一个矩阵分解为特征值和特征向量的乘积形式。特征值分解在矩阵的对角化和矩阵的幂运算中起到了重要作用。
3. 矩阵的奇异值分解
矩阵的奇异值分解是线性代数中的另一个重要概念,它可以将一个矩阵分解为三个矩阵的乘积形式。奇异值分解在矩阵的逆和矩阵的伪逆运算中起到了重要作用。
4. 线性变换
线性变换是线性代数中的一个重要概念,它描述了向量空间中的变换规律。线性变换具有保持加法和数乘运算的性质,它可以将一个向量空间映射到另一个向量空间。
5. 内积空间
内积空间是线性代数中的一个重要概念,它在描述向量之间的夹角和长度时起到了重要作用。内积空间具有加法、数乘和内积运算,并满足一系列的公理,例如对称性、线性性和正定性等。
6. 正交变换
正交变换是线性代数中的一个重要概念,它描述了向量空间中的旋转和反射等变换。正交变换具有保持向量长度和夹角的性质,它在计算机图形学和物理学中有广泛的应用。
以上是线性代数中的一些重要知识点的进一步总结,线性代数还有很多深入的内容和应用,例如线性规划、矩阵分解、张量分析等。希望读者通过本文的学习,能够进一步理解和应用线性代数的知识,为实际问题的求解提供帮助。
线性代数知识点总结 篇三
线性代数在考研数学中占有重要地位,必须予以高度重视。线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,太奇考研专家们提醒广大的2013年的考生们必须注重计算能力。线性代数在数学一、二、三中均占22%,所以考生要想取得高分,学好线代也是必要的。下面,就将线代中重点内容和典型题型做了总结,希望对2012年考研的同学们学习有帮助。
行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式。如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现。行列式的重点内容是掌握计算行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶。但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开。另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握。常见题型有:数字型行列式的计算、抽象行列式的计算、含参数的行列式的计算。关于每个重要题型的具体方法以及例题见《20xx年全国硕士研究生入学统一考试数学120种常考题型精解》。
矩阵是线性代数的核心,是后续各章的基础。矩阵的概念、运算及理论贯穿线性代数的始终。这部分考点较多,重点考点有逆矩阵、伴随矩阵及矩阵方程。涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题。这几年还经常出现有关初等变换与初等矩阵的命题。常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的计算与证明、解矩阵方程。
向量组的线性相关性是线性代数的重点,也是考研的重点。考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解。常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。
往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容。本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论)。主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题。
特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化。重点题型有:数值矩阵的特征值和特征向量的求法、抽象矩阵特征值和特征向量的求法、判定矩阵的相似对角化、由特征值或特征向量反求A、有关实对称矩阵的问题。
由于二次型与它的实对称矩阵式一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,可见正确写出二次型的矩阵式处理二次型问题的一个基础。重点内容包括:掌握二次型及其矩阵表示,了解二次型的秩和标准形等概念;了解二次型的规范形和惯性定理;掌握用正交变换并会用配方法化二次型为标准形;理解正定二次型和正定矩阵的概念及其判别方法。重点题型有:二次型表成矩阵形式、化二次型为标准形、二次型正定性的判别。
一、行列式与矩阵
行列式、矩阵是线性代数中的基础章节,从命题人的角度来看,可以像润滑油一般结合其它章节出题,因此必须熟练掌握。
行列式的核心内容是求行列式——具体行列式的计算和抽象行列式的计算。其中具体行列式的计算又有低阶和高阶两种类型,主要方法是应用行列式的性质及按行(列)展开定理化为上下三角行列式求解;而对于抽象行列式而言,考点不在如何求行列式,而在于结合后面章节内容的相对综合的题。
矩阵部分出题很灵活,频繁出现的知识点包括矩阵各种运算律、矩阵的基本性质、矩阵可逆的判定及求逆、矩阵的秩、初等矩阵等。
二、向量与线性方程组
向量与线性方程组是整个线性代数部分的核心内容。相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节,而其后两章特征值和特征向量、二次型的内容则相对独立,可以看作是对核心内容的扩展。
向量与线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。复习这两部分内容最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。
这部分的重要考点一是线性方程组所具有的两种形式——矩阵形式和向量形式;二是线性方程组与向量以及其它章节的各种内在联系。
(1)齐次线性方程组与向量线性相关、无关的联系
齐次线性方程组可以直接看出一定有解,因为当变量都为零时等式一定成立——印证了向量部分的一条性质“零向量可由任何向量线性表示”。
齐次线性方程组一定有解又可以分为两种情况:①有唯一零解;②有非零解。当齐次线性方程组有唯一零解时,是指等式中的变量只能全为零才能使等式成立,而当齐次线性方程组有非零解时,存在不全为零的变量使上式成立;但向量部分中判断向量组是否线性相关、无关的定义也正是由这个等式出发的。故向量与线性方程组在此又产生了联系——齐次线性方程组是否有非零解对应于系数矩阵的列向量组是否线性相关。可以设想线性相关、无关的概念就是为了更好地讨论线性方程组问题而提出的。
(2)齐次线性方程组的解与秩和极大无关组的联系
同样可以认为秩是为了更好地讨论线性相关和线性无关而引入的。秩的定义是“极大线性无关组中的向量个数”。经过“秩→线性相关、无关→线性方程组解的判定”的逻辑链条,就可以判定列向量组线性相关时,齐次线性方程组有非零解,且齐次线性方程组的解向量可以通过r个线性无关的解向量(基础解系)线性表示。
(3)非齐次线性方程组与线性表出的联系
非齐次线性方程组是否有解对应于向量是否可由列向量
三、特征值与特征向量
相对于前两章来说,本章不是线性代数这门课的理论重点,但却是一个考试重点。其原因是解决相关题目要用到线代中的大量内容——既有行列式、矩阵又有线性方程组和线性相关性,“牵一发而动全身”。
本章知识要点如下:
1、特征值和特征向量的定义及计算方法就是记牢一系列公式和性质。
2、相似矩阵及其性质,需要区分矩阵的相似、等价与合同:
3、矩阵可相似对角化的条件,包括两个充要条件和两个充分条件。充要条件一是n阶矩阵有n个线性无关的特征值;二是任意r重特征根对应有r个线性无关的特征向量。
4、实对称矩阵及其相似对角化,n阶实对称矩阵必可正交相似于以其特征值为对角元素的对角阵。
四、二次型
这部分所讲的内容从根本上讲是特征值和特征向量的一个延伸,因为化二次型为标准型的核心知识为“对于实对称矩阵,必存在正交矩阵,使其可以相似对角化”,其过程就是上一章实对称矩阵相似对角化的应用。
本章核心要点如下:
1、用正交变换化二次型为标准型。
2、正定二次型的判断与证明。
线性代数知识点总结 篇四
线性代数的学习切入点是线性方程组。换言之,可以把线性代数看作是在研究线性方程组这一对象的过程中建立起来的学科。
线性方程组
线性方程组的特点:方程是未知数的一次齐次式,方程组的数目s和未知数的个数n可以相同,也可以不同。
关于线性方程组的解,有三个问题值得讨论:
1、方程组是否有解,即解的存在性问题;
2、方程组如何求解,有多少个;
3、方程组有不止一个解时,这些不同的解之间有无内在联系,即解的结构问题。
高斯消元法
这最基础和最直接的求解线性方程组的方法,其中涉及到三种对方程的同解变换:
1、把某个方程的k倍加到另外一个方程上去;
2、交换某两个方程的位置;
3、用某个常数k乘以某个方程。我们把这三种变换统称为线性方程组的初等变换。
任意的线性方程组都可以通过初等变换化为阶梯形方程组。
由具体例子可看出,化为阶梯形方程组后,就可以依次解出每个未知数的值,从而求得方程组的解。
对方程组的解起决定性作用的是未知数的系数及其相对位置,所以可以把方程组的所有系数及常数项按原来的位置提取出来,形成一张表,通过研究这张表,就可以判断解的情况。我们把这样一张由若干个数按某种方式构成的表称为矩阵。
可以用矩阵的形式来表示一个线性方程组,这至少在书写和表达上都更加简洁。
系数矩阵和增广矩阵
高斯消元法中对线性方程组的初等变换,就对应的是矩阵的初等行变换。阶梯形方程组,对应的是阶梯形矩阵。换言之,任意的线性方程组,都可以通过对其增广矩阵做初等行变换化为阶梯形矩阵,求得解。
阶梯形矩阵的特点:左下方的元素全为零,每一行的第一个不为零的元素称为该行的主元。
对不同的线性方程组的具体求解结果进行归纳总结(有唯一解、无解、有无穷多解),再经过严格证明,可得到关于线性方程组解的判别定理:首先是通过初等变换将方程组化为阶梯形,若得到的阶梯形方程组中出现d=0这一项,则方程组无解,若未出现d=0一项,则方程组有解;在方程组有解的情况下,若阶梯形的非零行数目r等于未知量数目n,方程组有唯一解;若r<n,则方程组有无穷多解。
在利用初等变换得到阶梯型后,还可进一步得到最简形,使用最简形,最简形的特点是主元上方的元素也全为零,这对于求解未知量的值更加方便,但代价是之前需要经过更多的初等变换。在求解过程中,选择阶梯形还是最简形,取决于个人习惯。
齐次方程组
常数项全为零的线性方程称为齐次方程组,齐次方程组必有零解。
齐次方程组的方程组个数若小于未知量个数,则方程组一定有非零解。
利用高斯消元法和解的判别定理,以及能够回答前述的基本问题:解的存在性问题和如何求解的问题,这是以线性方程组为出发点建立起来的最基本理论。
对于n个方程n个未知数的特殊情形,我们发现可以利用系数的某种组合来表示其解,这种按特定规则表示的系数组合称为一个线性方程组(或矩阵)的行列式。行列式的特点:有n!项,每项的符号由角标排列的逆序数决定,是一个数。
通过对行列式进行研究,得到了行列式具有的一些性质(如交换某两行其值反号、有两行对应成比例其值为零、可按行展开等等),这些性质都有助于我们更方便的计算行列式。
用系数行列式可以判断n个方程的n元线性方程组的解的情况,这就是克莱姆法则。
总而言之,可把行列式看作是为了研究方程数目与未知量数目相等的特殊情形时引出的一部分内容。
线性代数知识点总结 篇五
线性代数占考研数学总分值的22%,约34分,以2个选择题、1个填空题、2个解答题的形式出现。虽然线性代数的考点众多,但要把这5个题目的分值完全收入囊中,则需要进行重点题型重点突破。
矩阵的秩
矩阵是解决线性方程组的解的有力工具,矩阵也是化简二次型的方便工具。矩阵理论是线性代数的重点内容,熟悉掌握了矩阵的相关性质与内容,利用其来解决实际应用问题就变得简单易行。正因为矩阵理论在整个线性代数中的重要作用,使它变为考试考查的重点。矩阵由那么多元素组成,每一个元素都在扮演不同的角色,其中的核心或主角是它的秩!
通过几十年考研考试命题,命题老师对题目的形式在不断地完善,这也要求大家深入理解概念,灵活处理理论之间的关系,能变通地解答题目。例如对矩阵秩的理解,对矩阵的秩与向量组的秩之间的关系的理解,对矩阵等价与向量组等价之间区别的理解,对矩阵的秩与方程组的解之间关系的掌握,对含参数的矩阵的处理以及反问题的解决能力等,都需要在对概念理解的基础上,联系地看问题,及时总结结论。
矩阵的特征值与特征向量
矩阵的特征值与特征向量在将矩阵对角化过程中起着决定作用,也是将二次型标准化、规范化的便捷方式,故特征值与特征向量也是考查重点。对于特征值与特征向量,须理清其相互关系,也须能根据一些矩阵的特殊性求得其特征值与特征向量(例如根据矩阵各行元素之和为3能够判断3是其一个特征值,元素均为1的列向量是其对应的特征向量),会处理含参数的情况。
线性方程组求解
对线性方程组的求解总是通过矩阵来处理,含参数的方程组是考查的重点,对方程组解的`结构及有解的条件须熟悉。例如2010年第20题(数学二为22题),已知三元非齐次线性方程组存在2个不同的解,求其中的参数并求方程组的通解。此题的关键是确定参数!而所有信息完全隐含在"AX=b存在2个不同的解"这句话中。由此可以得到齐次方程组有非0解,系数矩阵降秩,行列式为0,可求得矩阵中的参数;非齐次方程组有解故系数矩阵与增广矩阵同秩可确定唯一参数及b中的参数。至于确定参数后再求解非齐次方程组就变得非常简单了。
二次型标准化与正定判断
二次型的标准化与矩阵对角化紧密相连,即与矩阵的特征值与特征向量紧密联系。这里需要掌握一些处理含参数矩阵的方法以便运算中节省时间。正定二次型有很优秀的性质,但毕竟这是一类特殊矩阵,判断一个矩阵是否属于这个特殊类,可以使用正定矩阵的几个充要条件,例如二次型矩阵的特征值是否全大于0,顺序主子式是否均大于0等,但前者更常用一些。
历年考研数学真题解析线性代数命题特点解析
考研数学是研究生招生入学考试中通过笔试的形式对考生数学功底的考查,从近几年的考研数学历年真题分析结果来看,可以得出一个结论:线性代数的难度在高数和概率统计之间,且大多数的同学认为线性代数试题难度不大,就是计算量稍微偏大点,线代代数的考查是对基本方法的考查,但是往往在做题过程中需要利用一些性质进行辅助解决。
线性代数的学科特点是知识点之间的综合性比较强,这也是它本身的一个难点。这就需要同学们在复习过程中,注意对于知识点间的关联性进行对比着学习,有助于巩固知识点且不易混淆。
总体来说,线性代数主要包括六部分的内容,行列式、矩阵、向量、线性方程组、特征值与特征向量、二次型。
一、行列式部分,熟练掌握行列式的计算。
行列式实质上是一个数或含有字母的式子,如何把这个数算出来,一般情况下很少用行列式的定义进行求解,而往往采用行列式的性质将其化成上或下三角行列式进行计算,或是采用降阶法(按行或按列展开定理),甚至有时两种方法同时用。此外范德蒙行列式也是需要掌握的。行列式的考查方式分为低阶的数字型矩阵和高阶抽象行列式的计算、含参数的行列式的计算等等。同学们只要掌握了基本方法即可。
二、矩阵部分,重视矩阵运算,掌握矩阵秩的应用
。
通过考研数学历年真题分类统计与考点分布,矩阵部分的考点集中在逆矩阵、伴随矩阵、矩阵的秩及矩阵方程的考查。此外,含随矩阵的矩阵方程,矩阵与行列式的关系、逆矩阵的求法也是考生需要掌握的知识点。涉及秩的应用,包含秩与矩阵可逆的关系,矩阵及其伴随矩阵秩之间的关系,矩阵的秩与向量组的秩之间的关系,矩阵等价与向量组等价的区别与联系,系数矩阵的秩与方程组的解之间关系的分析。
三、向量部分,理解相关无关概念,灵活进行判定。
向量组的线性相关问题是向量部分的重中之重,也是考研线性代数每年必出的考点。要求考生掌握线性相关、线性表出、线性无关的定义。以及如何判断向量组线性相关及线性无关的方法。 向量组的秩和极大无关组以及向量组等价这些重要的知识点要求同学们一定一定掌握到位。
这是线性代数前三个内容的命题特点,而行列式的矩阵是整个线性代数的基础,对于行列式的计算及矩阵的运算与一些重要的性质与结论请考生朋友们一定要务必掌握,否则的话,对于后面四部分的学习会越学越难,希望同学们在复习过程中一定注意前面内容的复习,为后面的考研数学复习打好基础。
前面我们已经分析过,考研数学线性代数这门学科整体的特点是知识点之间的综合性比较强,有些概念较为抽象,这也是大部分考生认为考研数学线性代数不好学,根本找不到复习的头绪,做题时也是一头雾水,不知道怎么分析考虑。
这里,老师要求大家在学习过程中一定要注意知识间之间的关联性,理解概率的实质。如:矩阵的秩与向量组的秩之间的关联,矩阵等价与向量组等价的区别,矩阵等价、相似、合同三者之间的区别与联系、矩阵相似对角化与实对称矩阵正交变换对角化二者之间的区别与联系等等。若是同学们对于上面的问题根本分不清楚,则说明大家对于基本概念、基本方法还没有完全理解透彻。不过,大家也不要太焦急,希望同学们在后期的复习过程中对于基本概念、基本方法要多加理解和体会,学习一定要有心得。
下面我们分析一下后面三部分的内容,线性方程组、特征值与特征向量、二次型的命题特点。
线性方程组,会求两类方程组的解。线性方程组是线性代数这么学科的核心和枢纽,很多问题的解决都离不开解方程组。因而线性方程组解的问题是每年必考的知识点。对于齐次线性方程组,我们需要掌握基础解系的概念,以及如何求一个方程组的基础解系。清楚明了基础解系所含线性无关解向量的个数和系数矩阵的秩之间的关系。会判断非齐次线性方程组的解的情况,掌握其求解的方法。此外,考生还需要掌握非齐次线性方程组与其对应的齐次线性方程组的解结构之间的关系。
特征值与特征向量,掌握矩阵对角化的方法。这一部分是理论性较强的,理解特征值与特征向量的定义及性质,矩阵相似的定义,矩阵对角化的定义。同学们还需掌握求矩阵特征值与特征向量的基本方法。会判断一个矩阵是否可以对角化,若可以的话,需要把相应的可逆矩阵P求出来。还需要注意矩阵及其关联矩阵(转置、逆、伴随、相似)的特征值与特征向量的关系。反问题也是喜欢考查的一类题型,已知矩阵的特征值与特征向量,反求矩阵A。
二次型,理解二次型标准化的过程,掌握实对称矩阵的对角化。二次型几乎是每年必考的一道大题,一般考查的是采用正交变换法将二次型标准化。掌握二次型的标准形与规范型之间的区别与联系。会判断二次型是否正定的一般方法。讨论矩阵等价、相似、合同的关系。
虽然线性代数在考研数学考试试卷中仅有5题,占有34分的分值,但是这34分也不是很轻松就能拿下的。同学们在复习过程中需要对于基础知识点理解透彻,做考研数学题过程中多分析总结。