小学数学教案范文大全【优秀6篇】
小学数学教案范文大全 篇一
标题:数学教学实践案例分享——初探小学数学术语的教学方法
引言:在小学数学教学中,学生往往会遇到一些抽象的数学术语,如平行线、垂直线、等差数列等。对于这些术语的理解和应用,是小学生数学学习的重要环节。本文将分享一种初探小学数学术语的教学方法,帮助学生更好地理解和运用这些概念。
1. 教学目标:通过本节课的学习,学生将能够:
a) 理解和解释数学术语的含义;
b) 运用数学术语进行问题解决;
c) 将数学术语与实际生活联系起来。
2. 教学准备:
a) 教师准备:
- 准备一份包含多个数学术语的词汇表;
- 准备一些问题,用于引导学生思考和讨论。
b) 学生准备:
- 提前了解一些数学术语的含义。
3. 教学过程:
a) 导入:教师通过举例引入本节课的主题,激发学生对数学术语的兴趣。
b) 概念讲解:教师通过词汇表的方式,逐个解释数学术语的含义,并给出相应的示例。同时,教师可通过图示、实物等方式,帮助学生更好地理解这些概念。
c) 学习活动:教师将学生分为小组,每个小组选择一个数学术语,在规定时间内准备一个小组展示,包括解释术语含义、举例说明和提出问题。
d) 小组展示:每个小组进行展示,其他小组进行评价和提问。
e) 总结:教师对本节课的学习进行总结,强调数学术语的重要性,并鼓励学生在日常生活中积极应用这些概念。
4. 拓展活动:教师布置拓展活动,要求学生在日常生活中寻找和运用数学术语,并进行记录和分享。
5. 教学反思:教师对本节课的教学进行反思和总结,思考下一步的教学改进方案。
小学数学教案范文大全 篇二
标题:数学教学实践案例分享——培养小学生的数学思维能力
引言:数学思维能力是小学生数学学习的关键,但如何培养学生的数学思维能力却是一项具有挑战性的任务。本文将分享一种培养小学生数学思维能力的教学方法,帮助学生在解决问题时更加灵活和独立。
1. 教学目标:通过本节课的学习,学生将能够:
a) 运用多种方法解决数学问题;
b) 发现数学问题中的规律和模式;
c) 培养独立思考和解决问题的能力。
2. 教学准备:
a) 教师准备:
- 准备一些有趣的数学问题,涉及不同的数学概念和技巧;
- 准备一些数学游戏或挑战活动。
b) 学生准备:
- 提前复习和掌握一些数学概念和技巧。
3. 教学过程:
a) 导入:教师通过提出一个有趣的数学问题,激发学生的思考和探究欲望。
b) 学习活动:教师提供多种解决问题的方法,并引导学生思考和比较不同方法的优劣以及适用性。
c) 探究活动:教师提供一系列数学问题,要求学生独立或小组合作解决,并鼓励他们发现问题中的规律和模式。
d) 活动分享:学生展示他们的解决方法和发现,并互相评价和讨论。
e) 游戏活动:教师组织数学游戏或挑战活动,让学生在竞争中运用数学思维能力。
f) 总结:教师对本节课的学习进行总结,强调数学思维能力的重要性,并鼓励学生在日常生活中积极运用这些能力。
4. 拓展活动:教师布置拓展活动,要求学生在日常生活中寻找和解决数学问题,并进行记录和分享。
5. 教学反思:教师对本节课的教学进行反思和总结,思考下一步的教学改进方案。
小学数学教案范文大全 篇三
教学目标:
1、通过该活动让学生了解椭圆式田径跑道的结构,学会确定跑道起跑线的方法。
2、让学生切实体会到数学在体育等领域的广泛应用。
教学重点:如何确定每一条跑道的起跑点。
教学难点:确定每一条跑道的起跑点。
教具准备:多媒体课件
教学过程:
一、 提出研究问题。(出示运动场运动员图片)
1、小组讨论:田径场400m跑道,为什么运动员要站在不同的起跑线上?(终点相同,但每条跑道的长度不同,如果在同一条跑道上,外圈的同学跑的距离长,所以外圈跑道的起跑线位置应该往前移。)
2、各条跑道的起跑线应该向差多少米?
二、 收集数据
1、看课本75页了解400m跑道的结果以及各部分的数据。
2、出示图片、投影片让学生明确数据是通过测量获取的。
直跑道的长度是85.96m,第一条半圆形跑道的直径为72.6m,每一条跑道宽1.25m。(半圆形跑道的直径是如何规定的,以及跑道的宽在这里可以忽略不计)
三、 分析数据
学生对于获取的数据进行整理,通过讨论明确一下信息:
1、两个半圆形跑道合在一起就是一个圆。
2、各条跑道直道长度相同。
3、每圈跑道的长度等于两个半圆形跑道合成的圆的周长加上两个直道的长度。
四、 得出结论
1、看书P76页最后一图:
2、学生分别计算各条跑道的半圆形跑道的直径、两个半圆形跑道的周长以及跑道的全长。从而计算出相邻跑道长度之差,确定每一条跑道的起跑线。(由于每一条跑道宽1.25m,所以相邻两条跑道,外圈跑道的直径等于里圈跑道的直径加2.5m)
3、怎样不用计算出每条跑道的长度,就知道它们相差多少米?(两条相邻跑道之间的差是2.5π)
五、 课外延伸
200m跑道如何确定起跑线?
设计意图
此节知识虽不是很重要,但我独列出来进行教学,主要原因有;
1、 此节知识的综合性很强。
2、 密切联系生活,能提高学生的应用能力。
3、 培养学生收集数据的良好习惯,重视科学性。
小学数学教案范文大全 篇四
(1)圆的周长
教学目标:
1、使学生理解圆的周长和圆周率的意义,理解并掌握圆的周长公式,并能正确计算圆周长。
2、培养学生的观察、比较、概括和动手操作的能力。
3、对学生进行爱国主义教育。
教学重点:
圆的周长和圆周率的意义,圆周长公式的推导过程。
教学难点:
圆周长公式的推导过程。
教学准备:多媒体课件、实物投影、圆、绳子、直尺、圆规等。
教学过程:
一、情境创设。
1、课件出示一个正方形花坛和一个圆形花坛。
。
问:这是什么图形?围着花坛跑一圈,哪个长哪个短呢?
学生想办法:(1)看哪个跑得步子多。
(2)计算它们的周长,进行比较更为简便。
2、什么是长方形的周长?怎样计算?这个长方形的周长与长和宽有什么关系? C=(a+b)×2
3、什么是圆的周长?
让学生上前比划,圆的周长在那?那一部分是圆的周长?
得出定义:围成圆的曲线的长叫做圆的周长。
二、新知探究
(一)圆周长的公式推导。
1、探索学习。
(1)你可以用什么办法知道一个圆的周长是多少?
(2)学生各抒己见,分别讨论说出自己的方法:
A、用一根线,绕圆一周,减去多余的部分,再拉直量出它的长度,
即可得出圆的周长。
B、把圆放在直尺上滚动一周,直接量出圆的周长。
C、用一条小线的一端栓上小球在空中旋转。这样你能知道空中出现的圆的周长吗?
用滚动,绳测的方法可测量出圆的周长,但是有局限性。今天我们来探讨出一种求圆周长的普遍规律。
2、动手实践。
(1)4人小组,分别测量学具圆,报出自己量得的直径,周长,并计算周长和直径的比值。
(2)引生看表,问你们看周长与直径的比值有什么关系?
(3)你有办法验证圆的周长总是直径的3倍多一点吗?
(4)阅读课本P63,介绍圆周率,及介绍祖冲之。
∏=3.1415926535…… 是一个无限不循环小数。
3、得出计算公式。
圆的周长=圆周率×直径
C = ∏d
C = 2∏r
(二)、解决新问题。
1、解决情境题中的问题。
学生独立完成,小组内订正。
2、教学例1 : 圆形花坛的直径是20m,它的周长是多少米?小自
行车车轮的直径是50m,绕花坛一周车轮大约转动多少周?
小组内想出解决的办法,并在全班交流。
第一个问题: 已知 d = 20米 求:C = ?
根据 C =πd
20×3.14=62.8(m)
第二个问题: 已知: 小自行车d = 50cm
先求小自行车C = ? c=πd
50cm=0.5m
0.5×3.14=1.57(m)
再求绕花坛一周车轮大约转动多少周?
62.8 ÷1.57=40(周)
答:它的周长是62.8米。绕花坛一周车轮大约转动40周。
三、当堂测评
1、求下列各题的周长。(60分)
书本65页练习十五的第1题
2、判断正误。(40分)
(1)圆的周长是直径的3.14倍。 ( )
(2)在同圆或等圆中,圆的周长是半径的6.28倍。 ( )
(3)C =2πr =πd 。 ( )
(4)半圆的周长是圆周长的一半。 ( )
四、课堂质疑。
通过这节课的学习你都知道了什么?还有什么不懂得呢?
设计意图:
这节课我从以下几处着手:
1、 来源于生活,回归于生活。课前从生活中的实际问题入
手,提高学生学习兴趣,激起求知欲。在得出公式时及时解决问
题,体现数学课的应用价值。
2、 重视动手操作,深刻理解公式。对于公式的探究,我改变
以往的教师演示教学法,而是让学生通过具体的动手操作,让他们
体会知识概念的形成。教学中,我着力于培养学生的探究意识和探究能力,让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程来理解并掌握圆的周长计算方法。
教学后记:
小学数学教案范文大全 篇五
单元目标:
1、 理解并掌握分数除法的计算方法,会进行分数除法计算。
2、 会解答已知一个数的几分之几是多少求这个数的实际问题。
3、 理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值。
4、 能运用比的知识解决有关的实际问题。
单元重点:
理解并掌握分数除法的计算方法,理解比的意义,能用比的知识解决实际问题
单元难点:
理解分数除法的算理,列方程解答分数除法问题
第一课时:分数除法的意义和分数除以整数
教学目标:
1、 通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。
2、 动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。
3、 培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。
教学重点:
使学生理解算理,正确总结、应用计算法则。
教学难点:
使学生理解整数除以分数的算理。
教具准备:多媒体课件
教学过程:
一、旧知铺垫(课件出示)
1、复习整数除法的意义
(1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。
(2)根据已知的乘法算式:5×6=30,写出相关的两个除法算式。(30÷5=6,30÷6=5)
2、口算下面各题
×3 × ×
× ×6 ×
二、新知探究
(一)、教学例1
1、课件出示自学提纲:
(1)出示插图及乘法应用题,学生列式计算。
(2)学生把这道乘法应用题改编成两道除法应用题,并解答。
(3)将100克化成 千克,300克化成 千克,得出三道分数乘、除法算式。
2、学生自学后小组间交流
3、全班汇报:
100×3=300(克)
A、3盒水果糖重300克,每盒有多重? 300÷3=100(克)
B、300克水果糖,每盒100克,可以装几盒? 300÷100=3(盒)
×3= (千克) ÷3= (千克) ÷3=3(盒)
4、引导学生通过整数题组和分数题组的对照,小组讨论后得出:
分数除法的意义与整数除法相同,都是已知两个因数的积与其
中一个因数,求另个一个因数。都是乘法的逆运算。
(二)、巩固分数除法意义的练习:P28“做一做”
(三)、教学例2
(1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的 平均分成2份,并通过操作得出每份是这张纸的几分之几。
(2)小组汇报操作过程,得出:将一张纸的 平均分成2份,每份是这张纸的 。
(3)引导学生数形结合,对照不同的折法,说出两种不同的计算方法。
A、 ÷2= = ,每份就是2个 。
B、 ÷2= × = ,每份就是 的 。
(4)如果把这张纸的 平均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对比,让学生发现第二种方法适用的范围更广。
4、引导学生观察 ÷2和 ÷3两个算式,概括出分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。
三、当堂测评(课件出示)
1、计算
÷3 ÷3 ÷20 ÷5 ÷10 ÷6
2、解决问题
(1)、一辆货车2小时耗油10/3升,平均每小时耗油多少升?
(2)、正方形的周长是4/5米,它的边长是多少米?
学生独立完成。
教师讲评,小组间批阅。
四、课堂总结
1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)
2、谁来把这两部分内容说一说?
教学后记
小学数学教案2
稍复杂的“求一个数的几分之几是多少”的问题
教学目标:
1、使学生掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法的两步应用题。
2、发展学生思维,侧重培养学生分析问题的能力。
教学重点:理解数量关系。
教学难点:根据多几分之几或少几分之几找出所求量是多少。
教具准备:多媒体课件。
教学过程:
一、 旧知铺垫(课件出示)
1、口答:把什么看作单位“1”的量,谁是几分之几相对应的量?
(1)一块布做衣服用去 。 (2)用去一部分钱后,还剩下 。
(3)一条路,已修了 。 (4)水结成冰,体积膨胀 。
(5)甲数比乙数少 。
2、口头列式:
(1)32的 是多少? (2)120页的 是多少?
(3)绿化造林对可降低噪音,原来80分贝的汽笛噪音,经绿化隔离带后,降低了 ,降低了多少分贝?
(4)绿化造林对可降低噪音,原来80分贝的汽笛噪音,经绿化隔离带后只剩下原来的 ,人现在听到的声音是多少分贝?
3、你能把口头列式计算中的第(3)(4)题合并成一道题吗?
4、根据学生回答,出示例4,并指出:这就是我们今天要学习的“稍复杂的分数乘法应用题”。
二、新知探究
(一)教学例2
1、课件出示自学提纲:
1)画出线段图,分析题意,寻找解题方法。
2)小组间说出图中各部分表示什么?哪些是已知的,哪些是要求的,哪一个是表示单位“1”的量?让后把线段图表示完整。
3)四人小组讨论,根据线段图提出不同解决办法,并列式计算。
2、学生汇报:
解法一:80-80× =80-10=70(分贝)
解法二:80×(1- )=80× =70(分贝)
3、学生讨论两种解法的不同:两种方法都是从整体与部分的关系入手。第一种思路是从
总量里减去一个部分量;第二种方法是求出部分量与总量的比较关系,再运用求一个数的
几份之几是多少的方法求出这个部分量。
4、巩固练习:P20“做一做”
(二)教学例3
1、读题理解题意后,提出“婴儿每分钟心跳的次数比青少年多 ”表示什么意思?(组织学生讨论,说说自己的理解)
2、引导学生将句子转化为“婴儿每分钟比青少年多跳的次数是青少年每分钟心跳次数的 ”。着重让学生说说谁与谁比,把谁看作单位“1”。
3、出示线段图,学生讨论交流,结合例2的解题方法,学生独立列式计算后全班交流两种解题方法。
解法一:75+75× =75+60=135(次)
解法二:75×(1+ )=75× =135(次)
4、巩固练习:P21“做一做”(列式后让学生说说算式各部分表示什么)
三、当堂测评
练习五第2、3、4、5题。
1、学生依据例题引导的解题方法,引导学生抓住题目中关键句子分析,找到谁与谁比,
谁是表示单位“1”的量。独立完成。教师巡回指点,照顾差生。
2、小组间解决疑难,全班汇报,教师讲评。
四、谈收获、找疑难
这节课你有什么收获?还有什么不懂的吗?
设计意图:
例2和例3都是在理解和掌握了求一个数的几分之几是多少的问题的思路和方法的基础上,学习解决稍复杂的求一个数的几分之几是多少的问题。
教学中,我依然依据教学例1时教给学生的解答步骤进行分析解答,找出单位“1”,并画出线段图帮助理解。教学中,我引导学生紧扣线段图,直观地理解题意,并引导学生从数量和分率两方面入手,培养学生思维的多样性。但本堂课,老师讲解的部分似乎多了一些,留给学生讨论、练习的时间稍为稀薄。
教学后记 :
小学数学教案范文大全 篇六
教学目标:
1、创设自主探索的学习情境,使学生在合作交流、尝试练习、归纳领悟等过程中,理解一个数乘分数的意义,掌握分数乘以分数的计算法则,学会分数乘分数的简便计算。
2、通过组织学生进行迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。
3、通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。
教学重点:理解一个数乘分数的意义,掌握分数乘分数的计算方法。
教学难点:推导算理,总结法则。
教具准备:多媒体课件
教学过程:
一、复习引入
1、计算下列各题并说出计算方法。
× × ×
2、上面各题都是分数乘以整数,说一说分数乘以整数的意义。
3、引入:这节课我们来学习一个数乘以分数的意义和计算方法。
二、新知探究
1、课件出示教学目标
理解一个数乘分数的意义。
掌握分数乘以分数的计算法则。
学会分数乘分数的简便计算。
2、教学例3
(1)出示条件和问题:每小时粉刷这面墙的 , 小时粉刷这面墙的几分之几?根据公式“工作效率×工作时间=工作总量”,学生列式: ×
(2)引导学生动手操作,把一张纸张看作一面墙,第一步先涂出1小时粉刷的面积,即这面墙的 ,第二步再涂出 小时粉刷这面墙的面积,即 的 ,由此得出 × 这个乘法算式表示“ 的 是多少?”
(3)根据直观的操作结果,得出 × = ,根据刚才操作的过程和结果推导出计算方法: × = = 。
(4)提出问题: 小时粉刷多少呢?让学生用前面的方法涂色、推导、计算,自主解决问题。
3、小结一个数乘分数的意义和计算方法。
(1)意义:一个数乘分数,表示求这个数的几分之几是多少。
(2)计算法则:分数乘分数,用分子乘分子,分母乘分母。
4、教学例4
(1)引导学生分析题意,根据“速度×时间=路程”的数量关系列出算式: × 。
教学目标:
1、通过创设自主探究,尝试迁移、合作交流的探究情境,使学生理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。
2、在观察、迁移、尝试练习、交流反馈等活动中,培养学生的推理能力及思维的灵活性。
3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆猜测,培养他们勇于实践的思维品质。
教学重点:
理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。
教学难点:熟练掌握运算定律,灵活、准确、合理地进行计算。
教具准备:多媒体课件
教学过程:
一、旧知铺垫
1、整数混合运算的运算顺序是怎么样?(先算二级运算,后算一级运算)
2、哪些运算属于二级运算,哪些运算属于一级运算?(乘、除法属于二级运算,加、减法属于一级运算)遇到有括号的题目该怎么来计算?(有括号的要先算小括号里面的,再算中括号里面的)
3、观察下面各题,先说说运算顺序,再进行计算。
(1)36×2+15 (2)5×6+7×3 (3)15×(34-27)
二、新知探究
1、向学生说明:分数混合运算的顺序和整数的运算顺序相同。按照此规则,学生仔细确定运算顺序后计算下面各题。(课件出示)
(1) + × (2) × -
(3) - × (4) × +
2、复习整数乘法的运算定律
(1)乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c
(2)这些运算定律有什么用处?你能举例说明吗?
(3)用简便方法计算:25×7×4 0.36×101
3、推导运算定律是否适用于分数。
(1)鼓励学生大胆猜测并勇于发表自己的个人意见。
(2)验证:有些同学认为整数乘法的运算定律能适用于分数乘法,而有些同学认为不能,你们能找到证据证明自己的观点吗?
(利用例5的三组算式,小组讨论、计算,得出两边式子的关系)
(3)各四人小组汇报讨论和计算结果。
4、教学例6
(1)课件出示: × × ,学生先独立计算,然后全班交流,说一说应用了什么运算定律?(应用乘法交换律)
(2)课件出示: + × ,学生先观察题目,然后指名说说这道题适用哪个运算定律,为什么?(适用乘法分配率,因为 ×4和 ×4都能先约分,这样能使数据变小,方便计算)
(3)小结:应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点,想想应用什么定律可以使计算简便。
三、课堂检测
练习三的第一题,第三题。
(1) 先让学生观察题目中的已知数的特点,想想怎样做简便?应用
了什么运算定律。再独立完成练习。教师巡回指点,发现存有问题。
(2)小组内评比,解决疑难问题。
(3)教师讲解疑难。
四、课堂自我评价
每个学生对自己这节课的表现进行自我评价,并提出问题。
设计意图
体现学生学习的主动性和自主性。这堂课我设计以学生的自主学习为主,放手给学生,鼓励学生大胆猜想,再利用四人学习小组相互探讨,利用实例进行验证,最后在班级这个大氛围内最后验证。
教学后记
第五课时 :练习课
第六课时:解决问题(一)
求一个数的几分之几是多少
教学目标:
1、联系生活实际,创设探究情境,使学生初步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法一步应用题。
2、在观察、猜想、尝试练习、交流反馈等活动中,培养学生分析能力,发展学生思维。
3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆质疑,培养他们的创新能力。
教学重点:理解题中的单位“1”和问题的关系。
教学难点:抓住知识关键,正确、灵活判断单位“1”。
教具准备:多媒体课件。
教学过程:
一、旧知铺垫(课件出示)
1、先说下列各算式表示的意义,再口算出得数。
12× ×
2、列式计算。
(1)20的 是多少?(2)6的 是多少?
3、学生得出:求一个数的几分之几用乘法。
二、新知探究
(一)课件出示自学目标
1、通过学习掌握求一个数的几分之几是多少的应用题的解
题方法并会分析数量关系。
2、知道解这类应用题的关键是什么?
3、知道如何找单位“1”。
(二)、教学例1
1、课件出示自学提示
(1)、正确理解关键句“我国人均耕地面积仅占世界人均耕地面积的 ”。
(2)、结合线段图理解题意,找到解题思路。
(3)、如何来理解单位“1”?(小组讨论,理解这句话是把“我们人均耕地面积”与“世界人均耕地面积”相比较,其中“世界人均耕地面积”是表示单位“1”的量,知道世界人均耕地面积为2500平方米,求我国人均耕地面积就是求2500的 是多少)
(4)、在分析题意的基础上,学生独立列式、计算。
2、学生根据提示自学
全班交流汇报:
2500× =1000(平方米)
3、结合计算结果,让学生说说自己的想法,培养学生分析数据的能力,进行国情教育。
4、巩固练习:“做一做”,让学生画线段图表示题意,说说自己是怎样想的?依据是什么?然后独立解答。
三、当堂测评
练习四第2题、第3题。
学生独立完成,教师巡回指点,照顾差生。
小组内订正后
四、课堂总结
解答“求一个数的几分之几是多少”的应用题的解题步骤是什么?(找出关键句、确定单位“1”,画出线段图帮助理解题意,最后再列式解答)
设计意图:
本堂课是解决“求一个数的几分之几是多少”的问题,教学中,我紧扣分数乘分数的意义进行复习,并事先复习如“20的 是多少?”的文字题,为解决与此相似的应用题做好准备。
由于本节课是分数应用题学习的初始,因而教学中,我除了帮助学生分析、理解题意之外,更重要的还在于教给学生分析、解答分数应用题的方法,特别是在如何找单位“1”这个关键点上,更是花了较多的时间,但我认为这是十分必要的。
教学后记:
第七课时:练习课