传感器信号人体通信技术论文【精彩3篇】
传感器信号人体通信技术论文 篇一
标题:传感器信号人体通信技术的应用与发展
摘要:传感器信号人体通信技术是一种创新的通信方式,通过利用人体作为传输媒介,将传感器信号传输到目标设备,实现信息的传递与交流。本文将介绍传感器信号人体通信技术的原理与应用,探讨其在医疗、物联网和生物识别等领域的潜在发展前景。
引言:随着科技的不断进步和人们对信息交流的需求不断增加,传感器信号人体通信技术应运而生。传感器信号人体通信技术是一种基于人体生物电信号传输的新型通信方式,通过将传感器信号注入到人体中,利用人体的导电性将信号传递到目标设备。与传统的无线通信技术相比,传感器信号人体通信技术具有更低的功耗、更高的安全性和更广泛的应用前景。
主体:传感器信号人体通信技术的原理是将传感器信号通过生物电信号的方式传输到目标设备。在这个过程中,首先需要将传感器信号转化为生物电信号。传感器可以采集到各种不同的信号,如温度、压力、光线等,通过相应的信号处理算法,将这些信号转化为可注入到人体的生物电信号。接下来,将转化后的生物电信号注入到人体中,通过人体的导电性将信号传递到目标设备。目标设备通过相应的接收器接收和解码信号,从而实现信息的传递与交流。
传感器信号人体通信技术具有广泛的应用前景。在医疗领域,传感器信号人体通信技术可以用于实时监测患者的生理参数,如心率、血压等,从而及时预警和治疗疾病。在物联网领域,传感器信号人体通信技术可以实现人与设备之间的智能互联,提升生活和工作效率。在生物识别领域,传感器信号人体通信技术可以用于身份验证和安全访问控制,提高信息安全性。
结论:传感器信号人体通信技术是一种创新的通信方式,具有广泛的应用前景。通过将传感器信号注入到人体中,利用人体的导电性将信号传递到目标设备,实现信息的传递与交流。传感器信号人体通信技术在医疗、物联网和生物识别等领域具有重要的应用价值,有望为人们的生活和工作带来更多便利与安全性。
传感器信号人体通信技术论文 篇二
标题:传感器信号人体通信技术的安全性与隐私保护
摘要:传感器信号人体通信技术作为一种创新的通信方式,虽然具有广泛的应用前景,但同时也面临着安全性和隐私保护的挑战。本文将探讨传感器信号人体通信技术在安全性和隐私保护方面的问题,并提出相应的解决方案,以保障用户的信息安全和隐私权益。
引言:随着传感器信号人体通信技术的发展,人们对其安全性和隐私保护的关注也日益增加。传感器信号人体通信技术作为一种将传感器信号通过人体传输的通信方式,其在信息传递过程中可能面临着信号被窃听、篡改和冒用的风险,同时也涉及到用户的个人隐私问题。因此,保障传感器信号人体通信技术的安全性和隐私保护成为当前研究的重点。
主体:传感器信号人体通信技术的安全性问题主要包括信号的加密和身份验证。为了防止信号被窃听和篡改,可以采用对传感器信号进行加密的方法,确保只有合法的接收器才能解密和读取信号。同时,为了防止信号的冒用,可以通过身份验证的方式,对接收器和发送器进行双向认证,确保信号的发送和接收双方的身份合法可信。
传感器信号人体通信技术的隐私保护问题主要涉及到用户的个人隐私信息。在应用传感器信号人体通信技术时,需要确保用户的个人隐私信息不会被恶意获取和滥用。可以通过匿名化处理、数据权限控制和隐私协议等方式来保护用户的个人隐私信息。例如,可以采用数据加密的方式对用户的个人隐私信息进行保护,只有授权的接收器才能解密和读取。
结论:传感器信号人体通信技术作为一种创新的通信方式,虽然具有广泛的应用前景,但同时也面临着安全性和隐私保护的挑战。为了保障用户的信息安全和隐私权益,需要在传感器信号的加密和身份验证方面加强研究,同时也需要采取相应的措施来保护用户的个人隐私信息。只有在安全性和隐私保护得到有效保障的前提下,传感器信号人体通信技术才能真正发挥其应用的潜力。
传感器信号人体通信技术论文 篇三
传感器信号人体通信技术论文
摘要:传感器信号人体通信机理研究是通过生理传感器作为被测人体的生理信息采集节点,以人体体表作为传感器输出信号的传输媒质,进行人体信息监测的一种新型的技术手段及方法。通过对人体信道特性、信号耦合方法的深入研究,设计了合理的传感器信号处理链路、信号调制方法,并通过试验验证了传感器信号人体通信的可行性。
关键词:人体通信;传感器;信号链
0引言
以传感器获取人体的生理信息正被广泛地应用于健康监测、医疗诊断、健身娱乐、单兵作战等领域。目前,研究的热点之一是将人体本身作为生理信息的传输媒质来实现生理传感器输出信号的传输。要完成生理信息的实时监测,实现从信号采集、数据传输到信息识别与提取的整个信号回路的闭合,就需要通过传感器技术、信号处理技术、微功耗技术、通信技术作为其技术支撑与保障。如何将这些技术有机地结合起来,应用于人体通信传感器信号的采集、传输与识别,实现生理信号的实时监测正是本文的主要研究内容。通过建立以生理传感器为测试节点,以人体本身作为各点信号与接收机之间的传输媒质,建立起基于人体通信的人体信息的实时监测系统。影响传感器信号人体通信的主要参数包括信号耦合方式、信号电压、信号电流、载波频率、编码方式、传输速率等参数特征。下文将对这些因素对传感器信号人体通信的影响进行详细研究和分析。
1通信信道特性
1.1人体信道电磁特性
人体组织和其他导电介质一样都遵循电磁波传输理论,当在人体加载电场时,电磁场在人体内部有一定的趋肤深度,人体组织可看作电导率很小的介质,其趋肤深度为[1-2]:δ=2σ槡εμ(1)式中:σ是电导率,ε是相对介电常数,μ是磁导率,由于人体组织是非磁性材料,因此这里的磁导率为真空磁导率1。当σ/ωε1时,人体组织可看作电导率很大的介质,其趋肤深度为:δ=ε槡πμσf(2)式中:f是外加电磁场频率。为了减小传感器信号通过人体进行信号传输时对人体内部组织的影响,应有效利用趋肤效应,使传感器信号沿人体体表进行传输。
1.2人体信道安全性要求
在考虑采用人体作为信号传输通道的场合,需要考虑其所能承受的安全电流等相关特性。外露于电、磁时变效应的安全限制,基于建立的健康效应的电磁场(EMF)参见国际委
员会的电离辐射防护(ICNIRP)。如图1所示,根据频率的领域,物理量用来指定外露在EMF的基本限制如下:频率范围1Hz~10MHz的电流密度(J);指定频率范围100kHz~10GHz的能量吸收率(SAR);频率范围10~300GHz的功率密度(S)。在设计基于人体通信的生理传感器时,考虑到其低发射功率、低能耗、长期使用的要求。选择了1kHz~10MHz作为信号的传输频段,并根据该频段对电流密度的要求,结合表1将传感器输出信号的电流控制在如表所示的频率范围与之对应的电流范围以内。2传感器信号人体耦合方法及对比
基于本文第一部分对以人体作为通信信道的信道特性的分析后,要想稳定可靠地完成传感器信号在人体信道中的`传输,需要选择合理的信号耦合方式。同无线通信通过空气进行数据传输不同,人体通信信道是电磁特性复杂的人体组织结构。如何采取有效方式将信号耦合,进人体信道并实现信号在人体信道中的高效传输是实现人体通信最为关键的问题。目前主要认为人体通信系统通过三种方式将信号耦合到人体信道:电流耦合、电容耦合、天线耦合[3-4]。电流耦合将人体当作导体,需要从人体接导线引出信号,不适于高频传输;电容耦合即通过静电场耦合,不需要导线,却易受外界环境的干扰;天线耦合即通过电磁波耦合,利用波导效应将电磁信号耦合到人体,利用人体完成电磁信号的传导。根据生理信号传感器输出信号具有低发射功率、低能耗、长期使用的特点,选择电场耦合作为传感器输出信号的耦合方式。
3传感信号处理方法
3.1传感器信号链路设计
3.1.1发射信号链路
传感器节点作为传感器信号的发射端,通过将采集到的具有生理信息的模拟信号进行数字调制的方式将其加载到用于人体通信的载波信号中。信号发射过程为:将采集到的微弱的生理电信号进行放大,经过滤波滤除噪声分量,将原始的模拟信号转换为方波形式的数字信号,对得到的数字信号进行信号编码,将编码后的数字信号调制到指定频率的正弦波交流载波频段,对调制后的信号进行功率放大并进行发送。
3.1.2接收信号链路
采用多点传感器发射信号、一点接收机接收信号的模式,通过佩戴在手腕或腰部的信号接收机,对多人体通信载波中的多路传感器信号进行识别和处理。接收机信号接收过程为:先通过带通滤波器得到全部传感器所发射的有用信号,通过取样电路将通过电流耦合进接收机的人体通信信号转化为电压信号,通过低通滤波去掉信号中的载波分量,通过带通滤波得到指定传感器发射的信号,对该信号进行低噪声放大,然后进行信号整形去除尖峰脉冲等干扰,最终通过与编码对应的解码方式对信号进行解码还原出原始的生理电信息。
3.2传感器微功耗设计
由于采用的是基于mA级电流传输的正弦波交流信号作为人体通信载波信号,则可将载波信号本身作为传感器供电能量的来源,根据电磁耦合的基本原理,将载波信号中携带的电能耦合到传感器电路中实现通过载波为生理传感器进行供电的功能。因此可以简化传感器电路,减小传感器功耗,减小传感器的体积,降低传感器的成本,保证生理传感器可以长期稳定有效的进行工作。
3.3多信号调制解调方法
由于所建立的人体生理信息监测系统,对位于身体不同部位的多个生理参数进行信息采集,所以输出传感信号的调制解调方式适应同时对多点测量信息实现收发的功能。采用频分复用的方法将多传感器节点输出的信号加载到用于人体通信的载波信号上。
4实验数据及分析
以信号发生器在指定频率点产生峰峰值为3.3V的正弦波波信号时不同频率下信号的衰减程度随着频率的增高,其信号衰减程度也逐渐升高。但作为其接收值几百mV的电压值,相对于接收端电路仍是一个相对较大的可以识别并便于信号处理的电压值。当信号的调制频率过高时,信号向人体体表以外的空间进行辐射。但信号频率过低时,其信号波长将逐步增加,导致信号并非沿体表传输而是在体内进行传输。所以需要权衡以上因素,选择100kHz、200kHz两个频率作为编码后的数据信号的调制频率。
5结论
传感信号人体通信技术是一项全新生理状态监测技术,其以生理传感器为信息采集节点,以人体作为信号传输媒质,实现快速的数据交换。目前,随着可穿戴智能设备的大力发展,以人体作为信号传输媒质的信号传输方式有了更广泛的应用空间和更大的商业价值。以人体作为传感器信号通信介质,与其他无线体域网信号传输方式相比,有效地避免了通过无线电波辐射进行信号传输时,对周围无线电环境产生的干扰;同时也抑制了环境噪声对传感器信号传输产生的影响。在一些对电磁环境有特殊要求的应用场合,该技术体现出其独有的价值。
参考文献:
[1]吕英华.计算电磁学的数值方法[M].北京:清华大学出版社,2006.
[2]盛新庆.计算电磁学要论[M].合肥:中国科学技术大学出版社,2004.