高中必修三数学知识点总结(最新3篇)

高中必修三数学知识点总结 篇一

在高中数学的学习中,必修三是一个重要的阶段,它是高中数学的基础,也是进一步学习数学的重要垫脚石。本文将对高中必修三的数学知识点进行总结。

首先,我们来看看必修三中的代数部分。代数是数学中的基础学科,也是解决实际问题的重要工具。在必修三中,我们学习了一元二次函数、指数与对数、三角函数等知识点。一元二次函数是代数学中的重要内容,它的图像是一个抛物线。我们需要掌握它的基本性质,如顶点、对称轴、开口方向等。指数与对数是数学中的重要概念,它们可以用来描述数量的增长和衰减规律。三角函数是数学中的基础概念,它们可以用来描述角度和边长之间的关系。在必修三中,我们需要掌握基本的三角函数的定义、性质和图像。

其次,我们来看看必修三中的几何部分。几何是研究空间和图形的学科,也是数学中的重要分支。在必修三中,我们学习了平面向量、三角形、相似与全等等知识点。平面向量是几何中的基本概念,它可以用来描述平面上的位移和方向。三角形是几何中的基本图形,我们需要掌握三角形的基本性质,如角的度量、边的关系等。相似与全等是几何中的重要关系,它们可以用来判断两个图形是否相等或相似。在必修三中,我们需要掌握相似与全等的判定条件和性质。

最后,我们来看看必修三中的概率与统计部分。概率与统计是数学中的实际应用领域,它们可以用来描述随机事件和数据分析。在必修三中,我们学习了概率的基本概念和计算方法,如事件的概率、条件概率等。统计是概率的一种应用,它可以用来描述和分析数据的规律。在必修三中,我们需要掌握统计的基本概念和分析方法,如均值、中位数、标准差等。

综上所述,高中必修三数学知识点的总结包括代数、几何、概率与统计三个方面。在学习过程中,我们需要掌握这些知识点的基本概念、性质和应用方法。只有建立起扎实的基础,才能在高中数学的学习中取得更好的成绩。

高中必修三数学知识点总结 篇二

在高中数学的学习中,必修三是一个重要的阶段,它是高中数学的基础,也是进一步学习数学的重要垫脚石。本文将对高中必修三的数学知识点进行总结。

首先,我们来看看必修三中的代数部分。代数是数学中的基础学科,也是解决实际问题的重要工具。在必修三中,我们学习了一元二次函数、指数与对数、三角函数等知识点。一元二次函数是代数学中的重要内容,它的图像是一个抛物线。我们需要掌握它的基本性质,如顶点、对称轴、开口方向等。指数与对数是数学中的重要概念,它们可以用来描述数量的增长和衰减规律。三角函数是数学中的基础概念,它们可以用来描述角度和边长之间的关系。在必修三中,我们需要掌握基本的三角函数的定义、性质和图像。

其次,我们来看看必修三中的几何部分。几何是研究空间和图形的学科,也是数学中的重要分支。在必修三中,我们学习了平面向量、三角形、相似与全等等知识点。平面向量是几何中的基本概念,它可以用来描述平面上的位移和方向。三角形是几何中的基本图形,我们需要掌握三角形的基本性质,如角的度量、边的关系等。相似与全等是几何中的重要关系,它们可以用来判断两个图形是否相等或相似。在必修三中,我们需要掌握相似与全等的判定条件和性质。

最后,我们来看看必修三中的概率与统计部分。概率与统计是数学中的实际应用领域,它们可以用来描述随机事件和数据分析。在必修三中,我们学习了概率的基本概念和计算方法,如事件的概率、条件概率等。统计是概率的一种应用,它可以用来描述和分析数据的规律。在必修三中,我们需要掌握统计的基本概念和分析方法,如均值、中位数、标准差等。

综上所述,高中必修三数学知识点的总结包括代数、几何、概率与统计三个方面。在学习过程中,我们需要掌握这些知识点的基本概念、性质和应用方法。只有建立起扎实的基础,才能在高中数学的学习中取得更好的成绩。

高中必修三数学知识点总结 篇三

高中必修三数学知识点总结

   在日常过程学习中,是不是听到知识点,就立刻清醒了?知识点也不一定都是文字,数学的知识点除了定义,同样重要的公式也可以理解为知识点。还在苦恼没有知识点总结吗?以下是小编收集整理的高中必修三数学知识点总结,欢迎阅读与收藏。

  第一章 算法初步

  1.1.1

  算法的概念

  算法的特点:

  (1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.

  (2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.

  (3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.

  (4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.

  (5)普遍性:很多具体问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.

  1.1.2

  程序框图

  (一)程序构图概念:程序框图又称流程图,是一种用规定图形、流程线及文字说明来准确、直观地表示算法的图形。

  (二)构成程序框的图形符号及其作用

  学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:

  1、使用标准的图形符号。

  2、框图一般按从上到下、从左到右的方向画。

  3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。判断框具有超过一个退出点的唯一符号。

  4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。

  5、在图形符号内描述的语言要非常简练清楚。

  (三)、算法

的三种基本逻辑结构:顺序结构、条件结构、循环结构。

  1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。

  顺序结构在程序框图中的体现就是用流程线将程序框自上而 下地连接起来,按顺序执行算法步骤。如在示意图中,A框和B 框是依次执行的,只有在执行完A框指定的操作后,才能接着执 行B框所指定的操作。

  2、条件结构:

  条件结构是指在算法中通过对条件的判断 根据条件是否成立而选择不同流向的算法结构。

  条件P是否成立而选择执行A框或B框。无论P条件是否成立,只能执行A框或B框之一,不可能同时执行A框和B框,也不可能A框、B框都不执行。一个判断结构可以有多个判断框。

  3、循环结构:在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。循环结构可细分为两类:

  (1)、一类是当型循环结构,如下左图所示,它的功能是当给定的条件P成立时,执行A框,A框执行完毕后,再判断条件P是否成立,如果仍然成立,再执行A框,如此反复执行A框,直到某一次条件P不成立为止,此时不再执行A框,离开循环结构。

  (2)、另一类是直到型循环结构,如下右图所示,它的功能是先执行,然后判断给定的条件P是否成立,如果P仍然不成立,则继续执行A框,直到某一次给定的条件P成立为止,此时不再执行A框,离开循环结构。

  注意:1循环结构要在某个条件下终止循环,这就需要条件结构来判断。因此,循环结构中一定包含条件结构,但不允许“死循环”。

  2在循环结构中都有一个计数变量和累加变量。计数变量用于记录循环次数,累加变量用于输出结果。计数变量和累加变量一般是同步执行的,累加一次,计数一次。

  1.2.1

  输入、输出语句和赋值语句

  3、赋值语句

  (1)赋值语句的一般格式;

  (2)赋值语句的作用是将表达式所代表的值赋给变量;

  (3)赋值语句中的“=”称作赋值号,与数学中的等号的意义是不同的。赋值号的左右两边不能对换,它将赋值号右边的表达式的值赋给赋值号左边的变量;

  (4)赋值语句左边只能是变量名字,而不是表达式,右边表达式可以是一个数据、常量或算式;

  (5)对于一个变量可以多次赋值。

  注意:①赋值号左边只能是变量名字,而不能是表达式。如:2=X是错误的。②赋值号左右不能对换。如“A=B”“B=A”的含义运行结果是不同的。③不能利用赋值语句进行代数式的演算。(如化简、因式分解、解方程等)④赋值号“=”与数学中的等号意义不同。

  分析:在IF—THEN—ELSE语句中,“条件”表示判断的条件,“语句1”表示满足条件时执行的操作内容;“语句2”表示不满足条件时执行的操作内容;END IF表示条件语句的结束。计算机在执行时,首先对IF后的条件进行判断,如果条件符合,则执行THEN后面的语句1;若条件不符合,则执行ELSE后面的语句2 1.3.1辗转相除法与更相减损术。

  1、辗转相除法。也叫欧几里德算法,用辗转相除法求最大公约数的步骤如下:

  (1):用较大的数m除以较小的数n得到一个商≠0,则用除数n除以余数则用除数RRS0和一个余数R0;

  (2):若0=0,则n为m,n的最大公约数;若0R0得到一个商S1和一个余数R1;RRR;

  (3):若1=0,则1为m,n的最大公约数;若1≠0,R0除以余数R1得到一个商S2和一个余数R2;依次计算直至Rn=0,此时所得到的Rn?1即为所求的最大公约数。

  2、更相减损术

  我国早期也有求最大公约数问题的算法,就是更相减损术。在《九章算术》中有更相减损术求最大公约数的步骤:可半者半之,不可半者,副置分母?子之数,以少减多,更相减损,求其等也,以等数约之。

  翻译为:(1):任意给出两个正数;判断它们是否都是偶数。若是,用2约简;若不是,执行第二步。(2):以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数。继续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数。 例2 用更相减损术求98与63的最大公约数。

  3、辗转相除法与更相减损术的区别:

  (1)都是求最大公约数的`方法,计算上辗转相除法以除法为主,更相减损术以减法为主,计算次数上辗转相除法计算次数相对较少,特别当两个数字大小区别较大时计算次数的区别较明显。

  (2)从结果体现形式来看,辗转相除法体现结果是以相除余数为0则得到,而更相减损术则以减数与差相等而得到。

  1.3.2

  秦九韶算法与排序

  1、秦九韶算法概念:

  f(x)=anxn+an-1xn-1+….+a1x+a0求值问题

  f(x)=anxn+an-1xn-1+….+a1x+a0=( anxn-1+an-1xn-2+….+a1)x+a0 =(( anxn-2+an-1xn-3+….+a2)x+a1)x+a0

  =......=(...( anx+an-1)x+an-2)x+...+a1)x+a0

  求多项式的值时,首先计算最内层括号内依次多项式的值,即v1=anx+an-1

  然后由内向外逐层计算一次多项式的值,即 v2=v1x+an-2 v3=v2x+an-3......vn=vn-1x+a0

  这样,把n次多项式的求值问题转化成求n个一次多项式的值的问题。

  第二章 统计

  2.1.1

  简单随机抽样

  1.总体和样本

  在统计学中 , 把研究对象的全体叫做总体.把每个研究对象叫做个体.把总体中个体的总数叫做总体容量. 为了研究总体的有关性质,一般从总体中随机抽取一部分:研究,我们称它为样本.其中个体的个数称为样本容量。

  2.简单随机抽样,也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

  3.简单随机抽样常用的方法:

  (1)抽签法;⑵随机数表法;⑶计算机模拟法;⑷使用统计软件直接抽取。在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。

  4.抽签法:

  (1)给调查对象群体中的每一个对象编号;

  (2)准备抽签的工具,实施抽签;

  (3)对样本中的每一个个体进行测量或调查。

  例:请调查你所在的学校的学生做喜欢的体育活动情况。

  5.随机数表法:例:利用随机数表在所在的班级中抽取10位同学参加某项活动。

  2.1.2

  系统抽样

  1.系统抽样(等距抽样或机械抽样):把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。第一个样本采用简单随机抽样的办法抽取。K(抽样距离)=N(总体规模)/n(样本规模)

  前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布。可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。如果有明显差别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。

  2.系统抽样,即等距抽样是实际中最为常用的抽样方法之一。因为它对抽样框的要求较低,实施也比较简单。更为重要的是,如果有某种与调查指标相关的辅助变量可供使用,总体单元按辅助变量的大小顺序排队的话,使用系统抽样可以大大提高估计精度。

  2.1.3

  分层抽样

  1.分层抽样(类型抽样):先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。

  两种方法:

  (1).先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。

  (2).先以分层变量将总体划分为若干层,再将各层的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。

  2.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。

  分层标准:

  (1)以调查所要分析和研究的主要变量或相关的变量作为分层的标准。

  (2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。

  (3)以那些有明显分层区分的变量作为分层变量。

  3.分层的比例问题:

  (1)按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。

  (2)不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体进行专门研究或进行相互比较。如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。 2.2.2用样本的数字特征估计总体的数字特征。

相关文章

高一第一学期学习总结【优质3篇】

篇一 高一的第一个学期就这样结束了.迎来了盼望已久的寒假。 总结这个学期的学习,我想,主要有以下几个方面: 一、在思想上,爱国爱校,积极上进 我积极的参加学校所组织的活动与培训,认真参加团部所组织的政...
高中资料2019-06-03
高一第一学期学习总结【优质3篇】

高中地理学习的经典方法(推荐3篇)

地理作为一门学科,在文科中一直被称作是:文科中的理科。由此可见地理在高中生心目中学习难度还是很大的,今天说说关于高中地理的一些学习心得体会,希望给各位有所借鉴。 一、地理学习的根本—教材...
高中资料2019-05-03
高中地理学习的经典方法(推荐3篇)

高中数学函数公式(精选3篇)

高中数学函数公式是考试的考点之一,下面yjbys小编为大家精心整理的高中数学函数公式,欢迎大家阅读与学习! 一、映射与函数: (1)映射的概念: (2)一一映射:(3)函数的概念: 如:若 , ;问:...
高中资料2018-07-05
高中数学函数公式(精选3篇)

学生高考升学宴答谢词(精简4篇)

高考不仅是对年轻的学生的一次考验,也是学生由青涩走向成熟的一次神圣的洗礼。下面是小编给大家整理的学生高考升学宴答谢词,仅供参考。学生高考升学宴答谢词【篇一】尊敬的各位师长及亲友,大家好!感谢大家在百忙...
高中资料2019-06-02
学生高考升学宴答谢词(精简4篇)

全国普及高中阶段教育「教育部」【经典3篇】

教育部6日公布的《高中阶段教育普及攻坚计划(2017-2020年)》(以下简称《攻坚计划》)提出,到2020年,全国普及高中阶段教育,适应初中毕业生接受良好高中阶段教育的需求。 高中教育是否将纳入义务...
高中资料2012-04-06
全国普及高中阶段教育「教育部」【经典3篇】

高中暑假学习计划表(精选6篇)

光阴的迅速,一眨眼就过去了,我们又将迎来新的学习目标,续写新的诗篇,是时候认真思考学习计划该如何写了哦。学习计划怎么写才能发挥它最大的作用呢?以下是小编为大家整理的高中暑假学习计划表,希望对大家有所帮...
高中资料2015-05-07
高中暑假学习计划表(精选6篇)